
(/dashboard)

Printed on: 12-04-2018 11:18 AM

Java Advanced Data Structures
and Introduction to
Bioinformatics
Downtown Magnets High School (051576)

Submitted: Sep 11, 2018

Decision: Sep 13, 2018

Submission Feedback

APPROVED

Basic Course Information

Title: Java Advanced Data Structures and Introduction to Bioinformatics

Transcript
abbreviations:

JAVA ADV DS & INTR BINF AB CTE / 604309/10

Length of course: Full Year

Subject area: College-Preparatory Elective ("g") / Mathematics - Computer Science

UC honors designation? Yes

Non-honors equivalent
course:

My institution does not offer a non-honors equivalent

Non-honors exemption
details:

The Prerequisites are AP Computer Science A and Biology. Semester 2 of the course
(Bioinformatics or Computational Biology) is an integrated Biology/CS course.

Prerequisites: AP Computer Science A (Required)
Biology (Required)

Co-requisites: None

Integrated (Academics /
CTE)?

Yes

https://hs-articulation.ucop.edu/dashboard

Grade levels: 11th, 12th

Course learning
environment:

Classroom Based

Course Description

Course overview:

The course is the 3rd in a 3-year sequence, preceded by two JAVA programming courses: (1) Computer Science 1
and (2) AP Computer Science A.

Semester 1 covers advanced programming topics: Advanced Data Structures (The Collections Interface, Lists,
Sets, Maps, Iterators), GUI (Graphic User Interfaces), Recursion and Binary Search Trees. Students utilize the
advanced data structures in an open-ended project that algorithmically designs a Word Cloud on the fly from any
parsed text.

Semester 2 is an introduction to Bioinformatics, covering three open-ended topics. The second two, Genome
Assembly and Sequence Alignment, have various solutions, each with its own trade-offs:

1. Students write and leverage a simple DNA-to-protein translation program to computationally map (data
visualization) the Introns and Exons of Human Betaglobin. Students search the NCBI database for a gene of
their own interest, map it, and create a Presentation (PPTX or Google-doc), describing the gene, the
function of its protein product, and its importance. Students occasionally discover genetic anomalies, such
as an exon that is out-of-order.

2. Genome Assembly. Students implement standard varieties of (1) Shortest Common Superstring (SCS); and
(2) De Bruijn Graphs.
As culmination, students implement a custom form of SCS that can operate with improved efficiency on
larger sequences in real-time by early pruning of branches that would yield implausible assemblies.

3. Sequence Alignment. Local and Global variations are implemented.

The culminating comprehensive project is a more sophisticated algorithm for Sequence Alignment called Affine
Gap Penalty, that uses concepts from units in both semesters.

Course content:

Unit 1. Advanced Data Structures: The Collections Interface, Lists, Sets, Maps, Iterators

Unit 1 closely follows Chapter 11 (Java Collections Interface) of the textbook BJP (Building Java Programs, 2nd
edition).

Section 1 takes another look at the List interface, comparing its implementations LinkedLists and ArrayLists.
 It introduces iterators for traversing any Collection implementation. Iterators allow not only read access, but
the ability to change, remove or insert items into a list while it is being traversed.

Section 2 covers the Set interface, specifically its implementations HashSet and TreeSet. The former stores
elements in no particular order, the latter in sorted order due to its internal implementation using a binary
search tree.

Section 3 covers the Map interface, again looking at its implementations HashMap and TreeMap, whose
properties mirror that of HashSet and TreeSet. Maps are equivalent to the Python data structure Dictionary -
both are tables with a list of keys and their corresponding values.

 Unit Assignment(s):

Word Cloud Construction. There are several steps to this open-ended program.

1. Using the data structures they've studied (LinkedLists, HashSets and TreeMaps), students write a
program/method that will read in and parse any text file. and return a map (table) of its most frequently
occurring words. Students will conflate words that are the same, but differ only by case, or by syntactic
inflection - students will handle only simple cases, as they learn how complicated this task can quickly become
were they to try to handle all exceptional cases that the language presents.

2. Students pass the map to a word cloud class that - on the fly - will design and draw a word cloud one word at
a time, so that the process can be observed and better understood. They will use the arithmetic-spiral
algorithm developed by the author or Wordle, found in the discussion in Chapter 3 of the supplementary
textbook "Beautiful Visualizations"
(http://downtownmagnets.org/ourpages/users/srp4379/JADSBINF/Wordle_Feinberg.pdf
(http://downtownmagnets.org/ourpages/users/srp4379/JADSBINF/Wordle_Feinberg.pdf)). However, prior
to applying the algorithm, students must make several design decisions: (a) Deciding how to vary the size of
words depending upon their frequency; and (b) calculating the approximate area that the words will take up in
the window, and then adding a cushion.

3. Finally, students attempt to improve the efficiency of their program, as they observe how the application
slows down as it tries to place words in a drawing space that is increasingly full.

Unit 2: GUI (Graphic User Interfaces)

Unit 2 closely follows BJP Chapter 14. Students learn about Components: JOptionPanes, JFrames,
JPanels, JButtons, JTextFields and JLabels. A frame (or sub-element) will implement the
ActionListener interface, which requires implementation of the event-handler actionPerformed(). Various
layout managers, for layout of the elements in a frame, are considered. Additional components, including
JTextAreas and JScrollPanes are introduced, as well as Icons (properties) and Fonts. The

http://downtownmagnets.org/ourpages/users/srp4379/JADSBINF/Wordle_Feinberg.pdf

MouseInputListener interface can be implemented, allowing the application to respond to mouse events -
clicked, dragged, moved, pressed, released, and so on. Finally, students study how to draw in JPanels via the
paintComponent() method.

 Unit Assignment(s):

Students complete Exercises 1-9 at the end of the chapter, giving them relatively simple practice in writing
programs that utilize GUI components and respond to keystroke and mouse input. They then write programs
to implement the four suggested projects that follow: (1) a Notepad-like editor; (2) a graphics Hangman game;
(3) a graphics maze through which a "rat" can crawl through and escape, using various algorithms for escaping;
and (4) a Paint-like program.

Unit 3: Recursion

Recursion (which was not covered extensively in AP Computer Science A) is defined as a method which calls
itself. The technique is suited to easily and concisely - but not particularly efficiently (per machine time) -
solve certain problems that are not amenable to iterative solutions. It is an altogether different way of
thinking about how to solve problems computationally other than what is normally meant as computational
thinking (sequentially-arranged statements). Recursion involves solving a portion of a problem and then
internally calling the same method to solve the rest of the problem. A recursive method contains two parts:
(a) the base case; and (b) the recursive call. The base case (when written successfully) is a condition that
prevents the method from infinitely recursing. The unit gives students several weeks of practice in solving a
variety of problems of progressively increasing difficulty.

 Unit Assignment(s):

The website codingbat.com (Stanford University CS: cs.stanford.edu) contains 2 Recursion sections. The
difficulty level of the 30 problems in Recursion-1 ranges from easy to mid-level. The difficulty level of the 8
problems in Recursion-2 is HIGH. All in all, they give students a variety of problems whose solutions comprise
a range of recursive algorithmic solutions. Students complete these practice problems, then share solutions
and problem-solving strategies in a whole-class setting. (Note: Solutions to all codingbat problems can easily
be located on the Internet.)

The summative assessment, however, is a page of recursive problems written by the instructor using the
authoring feature of the website for writing custom problems (these solutions are NOT available on the
Internet).

Unit 4: Binary Search Trees

Unit 4 closely follows BJP Chapter 17. Students learn that Binary Trees (BTs) are linked structures, like
LinkedLists, composed of Nodes arranged in a tightly-constrained Tree structure with exactly two branches.
Students learn the recursive traversal algorithms: inorder, preorder and postorder, and the value/uses of
each. They learn the recursive algorithm for building sequential trees, and common operations (count
nodes/leaves and levels).

Students then turn their attention to Binary Search Trees (BSTs), which have similarities to the Binary Search
algorithm they studied in APCS-A.

Finally, they learn advanced tree operations: (a) balancing unbalanced trees - unbalanced defined as the levels
of left and right branches differing by more than 2; (b) searching trees and big O behavior (efficiency) values();
(c) and inserting and deleting nodes.

 Unit Assignment(s):

Students complete exercises 1-19 at the end of the chapter, all of which perform some sort of specific
operation on a BT or BST. Students implement several projects:

(a) Huffman encoding and compression using a binary tree. Students test it by reading a file, and converting
its characters to a compressed bit format, and saving as a file. Students then read in the compressed file, and
decode it back to its original form;

(b) A similar program that converts characters to Morse code, and back;

(c) A calculator that evaluates (nested) numeric expressions, in which the subtrees of a node that contains an
operator, contain operands; and

(d) Adding an Iterator to a BST. The Iterator will implement the hasNext(), next() and remove() methods, and
will require that students modify the BST structure to implement movement UP to parent nodes (much like a
doubly-linked list can move forward and backward).

Unit 5: Bioinformatics - Mapping Introns and Exons

Students build a simple DNA-to-protein direct translation program (circumventing the RNA intermediate
forms), using a Java Map data structure to hold the Codon : Amino-Acid Translation Table. In a traditional CS
course, this is generally as far as these programs are ever developed. However, the program can be leveraged
/ expanded to map the exons (protein coding regions) and introns (non-coding regions) of a gene as follows.
Translations of the gene are done for all three frameshifts, for a total of 3 possible translation sequences.
Searches of these sequences to ever increasingly shortened substrings of the gene protein eventually will
result in a match, and exons can be identified one-by-one. Note that intervening introns are not necessarily
multiples of 3; i.e. subsequent exons may be identified in any of the three frameshifts in that same direction.

Student Facing Instructions and Java Source code for the unit/project can be accessed at:
http://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/Assignment/Exons.htm
(http://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/Assignment/Exons.html)

http://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/Assignment/Exons.html

 Unit Assignment(s):

Students implement the algorithm described above, and test it on a sample gene (e.g. human hemoglobin) to
generate a list of exons. The class for each exon object includes its starting position and length, and
(optionally) a method for generating the corresponding sub-sequence. Students implement a method to
visualize the map of the exons (and introns) relative to the original DNA gene. Crucially, the output for the
printed map will be formatted for ease of reading and understanding, and will contain a parameter for line
length. Examples can be seen using the hyperlink below:

https://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/index.html
(https://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/index.html)

Students will visit NCBI (the National Center for Biotechnology Information) and search the Nucleotide/Gene
and Protein databases for a gene / protein pair that has multiple exons (i.e. more than one). They will input
these sequences into their program, generate an exon / intron map of their gene, and include it in a PPTX or
Google-doc Presentation about the importance of the gene and the function of its protein. The link below
demonstrates one of these presentations.

https://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/DopamineReceptor.html
(https://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/DopamineReceptor.html)

Unit 6: Bioinformatics - Genome Assembly

The unit considers several approaches - each with its own particular trade-offs - to the Genome Assembly (also
known as Sequence Reconstruction) problem. Students listen to the sequence of 13 online Johns Hopkins
lectures Algorithms for Assembly (https://www.coursera.org/learn/dna-sequencing/lecture/GaIMi/module-4-
introduction (https://www.coursera.org/learn/dna-sequencing/lecture/GaIMi/module-4-introduction)). The
lectures cover SCS (Shortest Common Superstring algorithm), the problem of repeating DNA sequences,
DeBruijn Graphs, and Eulerian walks.

Students create a program to generate random sequences of DNA, which are cut into a list of
overlapping fragments. Using this program as a base, they then implement 4 different ways to reassemble the
fragments:

(1) A naive algorithm. Find the two fragments with the largest overlap, combine them, delete them from the
list, and add back the new combined fragments. Repeat until only 1 fragment remains - the completed
assembly. The speed in real-time is quick, but the error rate is significant as occasionally two fragments may
be combined in error when the overlap for an incorrect fragment is >= the overlap for the correct fragment.
 When this happens, it often becomes impossible to combine the last two fragments or so. If not, and all
fragments can be used, this generates an assembly that is longer than the original sequence.

(2) SCS. Generate all of the possible permutations of fragment combinations. Real-time speed varies,
exponentially increasing with the number of fragments (N Factorial). The most common permutation
methods do not allow pruning. An original variant permutation method, however, does allow earlier pruning,
greatly improving performance. The trade-off with SCS is that it cannot accurately handle repeats.

https://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/index.html
https://downtownmagnets.org/ourpages/users/srp4379/CS3SW/Exons/DopamineReceptor.html
https://www.coursera.org/learn/dna-sequencing/lecture/GaIMi/module-4-introduction

(3) DeBruijn Graphs. Students implement the DeBruijn Graph and Eulerian walk algorithms.
The DeBruijn Graph algorithm does handle repeats, but ambiguities - particularly when there is more than one
Eulerian walk - limit its utility.

 Unit Assignment(s):

Students implement two versions of SCS, using different forms of the key method permutate(). This method
can generate all of the possible permutations from a list of fragments. Students first implement
the Steinhaus–Johnson–Trotter
(https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm) algorithm, but
when testing realize that it quickly gets bogged down as N increases. When students work out mathematically
that the number of permutations is N factorial (1! = 1; 2! = 2; 3! = 6; 4! = 24; 5! = 120; 6! = 720; 7! = 5 ,040;
 8! = 40,320; 9! = 362,880; 10! = 3,628,800; 11! = 39,916,800; 12! = 479,001,600; etc.), they are asked to
think about some way to reduce the number of permutations generated.

Students implement an original alternate version of permutate() that allows one to eliminate (prune) early on
whole branches of combined fragments using as a criterion a minimum overlap value. This allows the program
to process much larger fragment lists in real-time. The method is described below:

Algorithm: N = # of elements in input list.
Property that allows pruning: Elements appended to each list are placed in their FINAL positions!

Iteration 1 (I1): Generate N lists size=1, each containing one of the elements of the input list

Iteration 2 (I2): For each I1 list, generate N-1 lists, size=2; to each is appended one element from the
input list
that has not already been used in that list AND whose overlap with the final element is >= minOverlap

Iteration 3: For each I2 list, generate N-2 lists, size = 3; to each is appended one element from the input
list
that has not already been used in that list AND whose overlap with the final element is >=
minOverlap, etc.

Unit 7: Bioinformatics - Sequence Alignment

The unit closely follows the discussion in Chapter 6, pp. 147-226, of the supplementary textbook Introduction
to Bioinformatics Algorithms (Jones, Pevzner). The main focus is on two algorithms for Sequence Alignment:
(a) Local Alignment and (b) Global Alignment. However, students learn how sequence comparison can have
important ramifications, such as inferring/discovering the function of a newly discovered gene (particularly
for one related to a disease) based on its resemblance to a gene whose function is already known. Sequence
comparison can also be used to inform evolutionary relationships (the field of phylogenomics).

Students study the "Manhattan Tourist" problem, which serves as a model for how to think about the
basic sequence alignment algorithm, i.e. finding the longest path between 2 vertices in a directed acyclic
graph (DAG). Alignments use scoring matrices - either PAM (Point Accepted Mutations) or BLOSUM (Block

https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm

Substitution), based on the likelihood of mutating - as a criterion for identical and near matches between
amino acids. An alignment matrix can then be used to build an "edit-distance" sequence, which details how
one parsimoniously converts one sequence to the other and vice-versa.

 Unit Assignment(s):

Students implement both the Local and Global Alignment algorithms in several stages.

(1) They write a method to (a) prompt the user (using an Open File Dialog box) for the file path/name of a
Blosum scoring matrix, (b) read in and parse the file, and (c) place the data into a Map. They then write a
method - given two amino acids - to query the Map and return a Blosum score. Finally, to check that the
Blosum table was read in and processed correctly, students write a method to print out the matrix using the
Map-query method.

(2) Students write a method to allocate the 2-D Alignment Matrix, with one protein sequence across the top
and the other protein sequence down the left side, and fill it from top to bottom, left to right. They allocate a
duplicate matrix, but fill it with direction characters, indicating whether the value in each cell was calculated
using either (a) the cell diagonally to the upper-left, (b) the cell directly above, or (c) the cell directly to the
left. (LCS algorithm, p. 176 top).

(3) Students implement an iterative version of the (recursive) traceback method (printLCS algorithm, p. 176
bottom) to print out the edit-distance sequence. It will be formatted in three lines, with line 1 being one of
the protein sequences, line 2 being the edit-distance sequence, and line 3 the other protein sequence.

Honors Final Exam Details:

The culminating comprehensive project for the course is to write a much more sophisticated and
nuanced Sequence Alignment program called the Affine Gap Penalty, which corrects a serious deficiency in the
alignment algorithms previously studied in Unit 7, namely, how to handle substantial gaps between two otherwise
homologous sequences. The algorithmic model resembles a 3-D chess board (see Figure 1 immediately below).
 The algorithm is described in Chapter 6, pp. 184-187, of the supplementary textbook Introduction to
Bioinformatics Algorithms (Jones, Pevzner)

Affine Gap Figure 1 (http://www.downtownmagnets.org/ourpages/users/srp4379/pubs/UCOP/AffineGap.png)

The alignment algorithm begins in the middle level. One traverses a gap in either sequence/strand by jumping to
either the level above or below, per Figure 1. A jump to the "vertical" matrix corresponds to a gap in the sequence
along the left column of the alignment matrix, and a jump to the "horizontal" matrix corresponds to a gap in the
sequence along the top row of the matrix. Once a gap has been traversed, the alignment process jumps back to
the middle level.

The project is comprehensive in that it uses select concepts and skills studied throughout the year-long course: (1)
advanced data structures, (2) a GUI interface for selecting input data (sequences and parameters, including an
Open File Dialog to select files containing the data) and output of results, and (3) combinations of algorithmic
strategies.

http://www.downtownmagnets.org/ourpages/users/srp4379/pubs/UCOP/AffineGap.png

Students will test their programs by performing an alignment of a pre-mRNA gene (composed of exons and
introns) with its mature mRNA counterpart (from which introns have been spliced out), revisiting the examples
they studied in Unit 5 (Mapping Exons). Students will run the program by systematically using a host of different
values for the gap penalties. When these penalty parameters are properly selected/optimized, the program will
print a map of a gene's introns and exons - a real-world application.

Course Materials

Textbooks

Building
Java
Programs

Reges,
Stuart;
Stepp, Marty

Addison-Wesley
Publishing
Company , USA

2nd/2010 http://www.buildingjavaprograms.com/ Yes

Other

Bioinformatics for
Biologists

Pevzner,
Pavel; Shamir,
Ron

Cambridge
University
Press 2011

Supplementary
Textbook

[empty]

An Introduction to
Bioinformatics
Algorithms

Jones, Neil C;
Pevzner, Pavel
A.

MIT Press,
2004

Supplementary
Textbook

[empty]

Beautiful
Visualization,
Chapter 3
(Wordle)

Feinberg,
Jonathan

O'Reilly,
2010

Chapter in
Supplementary
Textbook

http://static.mrfeinberg.com/bv_ch03.pdf

Introduction to
Algorithms

Cormen, T;
Leiserson C;
Rivest R; Stein
C

3rd Ed / MIT
Press 2009

Supplementary
Textbook

[empty]

Title Author Publisher Edition Website Primary

Title Authors Date
Course material
type Website

© 2018 Regents of the University of California

Additional Information

Course Author:Scott Portnoff
Teacher
srp4379@lausd.net
3236271152 ext.

