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The Introductory 
Computer 
Programming Course 
is First and Foremost  
a LANGUAGE Course

An fMRI (functional Magnetic Resonance Imaging) study 
published in 2014 established that comprehension of 

computer programs occurs in the same regions of the brain 
that process natural languages—not logic, not math. The 
unexpectedness of this result was primed in part by the 
widespread belief that the language aspects of learning 
how to program are trivial when compared to learning to 
use programming languages for engineering tasks. In fact, 
though, the fMRI data is compelling cognitive evidence for 
the argument that the reason students have been failing 
introductory programming courses in large numbers—for 
decades—is because CS educators have underestimated 
the importance of teaching programming languages as 
languages per se. Despite the availability of this non-
invasive technology for well over two decades, educators 
have neither researched the cognitive complexities of 
how programming languages might be acquired, nor 
tried to seriously understand this process in any degree 
of depth. Consequently, they have failed to consider 
what this evidence now implies: (a) that programming 
languages, despite being artificial languages, are alive in 
the brains of programmers in much the same way as any 
natural language that those programmers speak; and (b) 
that this new information about the cognitive aspects 
of programming languages has profound pedagogic 
implications.

The title of this article—The Introductory Computer Program-
ming Course is First and Foremost a LANGUAGE Course—may 
seem provocative, but the truth is that language instruction is al-
ready a component of the introductory programming course. 
The problem, however, has been the specific pedagogic approach 
for teaching the language aspects of the course—a barebones and 
long-abandoned teaching paradigm for natural languages mod-
eled after a Prescriptive Linguistics1 approach (explicit rule-based 
grammar instruction), rather than one that incorporates principles 
of Second Language Acquisition (SLA)2 Theory (implicit repetitive 
exposure to language data in meaningful contexts). In the 21st cen-
tury, there are virtually no natural language classrooms that utilize 
the Prescriptive Linguistics approach—including those that teach 
Esperanto and Latin—yet this continues to be the universal instruc-
tional model for programming language instruction. Such a mod-
el could only make sense if applying syntactic rules was in fact an 
effective way to learn the grammars of programming languages, a 
belief that has never been corroborated. Indeed, studies in the lit-
erature going back decades overwhelmingly point to the opposite, 
documenting droves of novice programming students unable to 
stop making even the most basic of syntax errors [17].

1 �A Prescriptive grammar is a set of explicit rules for using a language, in most cases 
taught to enforce uniform usage.

2 �Second Language Acquisition is the study of how people learn a second language, i.e., 
how they acquire the capacity to verbally comprehend and communicate fluently in a 
second language.
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cilitates the acquisition of the basic syntactic features necessary 
to avoid compiler errors—an early and stubbornly persistent 
obstacle for many programming students [17], particularly 
those in high school. Acquisition of the much larger semantics 
piece—which can be assessed by the competent and efficient 
application of basic programming concepts—can also be facil-
itated by the addition of implicit repetitive strategies, but the 
process is lengthier and gradual, with a timeline mirroring that 
of natural languages.

Although three pedagogic strategies informed by SLA prin-
ciples and described and published previously are referenced, 
this article focuses on how one might go about teaching an ar-
bitrary language feature within a teaching paradigm that adapts 
principles of a whole-language communicative approach, us-
ing conditional execution as an example. The article concludes 
with a description of a secondary curricular model whose unit/
chapter content structure is informed by principles and objec-
tives that underlie second language instructional strategies—
adapting, but not using, the instructional strategies themselves, 
owing to the fundamental and substantial differences between 
natural and programming languages.

On a personal note, over the ten or so years of teaching 
my introductory (pre-APCS-A) programming course, I have 
employed a variety of curricula and tools: Scratch, Alice, 
cross-curricular problem-solving, Codingbat, Exploring Com-
puter Science, PLTW CSE (CS Principles) and so on. I would be 
hard-pressed to say that I had much success in reaching most 
of my students, let alone the traditional demographic of “high- 
fliers.” Despite the innovative and engaging nature of many of 
these curricula (specifically, the first four), what they all reca-
pitulated was the default explicit language model. Over the last 
several years, though, it has become progressively evident that 
implicit language strategies are pivotal, allowing many more of 
my students access to the curriculum, including clearer concep-
tual learning for the higher achieving ones as well.

This is not to claim that the explicit language model is patent-
ly ineffective—obviously there are talented students who man-
age to become successful programmers (and instructors); how-
ever, I believe they manage to do so despite this type of language 
instruction. My experience has been that an implicit language 
teaching model simply reaches more learners. Both the fMRI 
study and the anecdotal observations of the positive effects of 
implicit SLA-based instructional strategies reported here are 
evidence arguing for an alternative instructional model that 
could potentially have far-reaching outcomes for programming 
curricula and instruction, particularly at the secondary level. 

PART I: 
FMRI EVIDENCE FOR THE CENTRAL 
COGNITIVE ROLE OF LANGUAGE IN 
PROGRAMMING
A research study with mammoth implications for Computer 
Programming education, published in 2014, was by and large 
ignored by the Computer Science education community. Not 

Originally borrowed from foreign language pedagogies used 
prior to the 1960s, the Prescriptive Linguistics model became 
the default, unquestioned, and sole methodology used in class-
es from the earliest days of programming education, even as 
foreign language instruction itself shifted to other much more 
effective implicit methods. The fallout from this history has 
left our students with a conceptual pedagogic gap to bridge 
on their own, with instructors nevertheless expecting them to 
magically solve problems using logic mediated by a language in 
which most struggle to express basic fluency. Even those talent-
ed enough to somehow manage to get their programs to run 
and function properly still compose awkwardly structured pro-
grams well into their first year.3

It might seem counterintuitive that the small syntactic foot-
prints of programming languages, with their relatively simple and 
compact grammars, would translate into a lengthy and involved 
learning process. The specific difficulties in learning a program-
ming language, though, simply differ from those of learning a 
natural second language. The complications stem in large part 
from the very small number of control structures that program-
ming languages employ—although infinitely adaptable, they are 
at the same time semantically broad, diffuse, and ambiguous. 

The pedagogic model I have been developing in my high 
school classroom over the last few years has attempted to 
remedy this situation by utilizing implicit strategies for pro-
gramming language instruction. A key observation that has 
consistently come out of these efforts is the effectiveness of 
memorization, an implicit language learning strategy. Specifi-
cally, memorization of short programs seemingly overnight fa-

Even those talented enough to 
somehow manage to get  

their programs to run and function 
properly still compose awkwardly 

structured programs well into  
their first year. … Ironically, CS 

educators are the last holdouts of a 
language learning strategy  

for our students that we no longer 
even employ for the machines at the 

center of our discipline.

3 �Even computer scientists working on language-related problems (most notably 
Google Translate) have traded explicit rule-based approaches for implicit data/
machine learning algorithms because of the former’s inferior outcomes [19].  Ironically, 
CS educators are the last holdouts of a language learning strategy for our students 
that we no longer even employ for the machines at the center of our discipline.
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(ventral lateral prefrontal cortex). At least for the simple 
code snippets presented, programmers could use existing 
language regions of the brain to understand code without 
requiring more complex mental models to be construct-
ed and manipulated.

Interestingly, even though there was code that involved 
mathematical operations, conditionals, and loop itera-
tion, for these particular tasks, programming had less in 
common with mathematics and more in common with 
language. Mathematical calculations typically take place 
in the intraparietal sulcus, mathematical reasoning in the 
right frontal pole, and logical reasoning in the left frontal 
pole. These areas were not strongly activated in compre-
hending source code. [27]

What is initially remarkable about these findings is that the 
brain appears to process both programming languages and nat-
ural languages in a similar manner, despite their significant dif-
ferences. Per the Chomskyan-Schützenberger hierarchy of for-
mal grammars, programming languages are generally classified 
as Type-2 grammars, which generate what are known as con-
text-free languages. Natural human languages—termed regular 
languages in this hierarchy—are classified as Type-3 grammars, 
a subset of Type-2 grammars. This overlap may be the reason 

dismissed, but ignored, as if it were so peripheral to the think-
ing of CS educators that they could conceive of no place within 
their conceptual framework from where they might even begin 
a discussion about it. “Understanding Understanding Source 
Code with Functional Magnetic Resonance Imaging” reported 
the results of a study led by Prof. Janet Siegmund of the Uni-
versity of Passau (Germany), in collaboration with researchers 
at Carnegie-Mellon University (CMU), Georgia Institute of 
Technology (Georgia Tech) and three research institutions in 
Magdeburg (Germany) [30]. It describes a meticulously craft-
ed and executed series of experiments using fMRI4 to measure 
the brain activity of undergraduate programming students as 
they tried to understand5 what small Java programs did. The 
researchers found strong activations in brain regions that are 
specifically involved in language processing tasks—Brodmann 
Areas 6, 21, 40, 44 and 47 (Table 1).

At the same time, brain regions associated with processing 
math and logic tasks were minimally activated, as Georgia Tech 
Prof. Chris Parnin, the study’s fourth author, summarized.

The team found a clear, distinct activation pattern of five 
brain regions, which are related to language processing, 
working memory, and attention. The programmers in 
the study recruited parts of the brain typically associated 
with language processing and verbal oriented processing 

4 �fMRI (Functional Magnetic Resonance Imaging) is a noninvasive technique that measures precise differences in blood-oxygen levels in the brain—the BOLD (Blood Oxygen Level 
Dependent) contrast effect.  The BOLD effect results from the shifting magnetic properties of the iron atoms present in hemoglobin, depending upon whether the molecule is 
binding oxygen or not.  Neuronal activation is accompanied by an increase in both blood flow and arterial oxygenated (non-magnetic) hemoglobin to the affected brain regions, 
displacing venous blood containing deoxygenated (highly magnetic) hemoglobin.  The non-magnetic oxygenated blood interferes less with the magnetic resonance signal; hence a 
measurable difference can be detected.  There is a lag of 1 to 2 seconds after the triggering event, with the effect peaking at 5 seconds and dissipating at 12 seconds.  When neurons 
continue to be activated due to an ongoing stimulus, the peak broadens to a plateau.  After dissipation, the BOLD signal falls below pre-activation levels (the undershoot effect), 
but eventually rises back to pre-activation levels.

Experimental protocols need to consider various complicating factors.  To accurately associate brain regions with cognitive activity requires longer tasks (1-2 minutes) to generate 
plateaus.  Tasks need to be repeated and measurements averaged out to ensure that a threshold statistical confidence level is attained.  Activation artifacts from motion must 
also be minimized, e.g., the head must be kept still, and subjects must refrain from moving their jaws.  A critical piece is designing control tasks that filter out baseline cognitive 
processes—such as visual processing activations in the study cited above—that have minimal, and ideally no, overlap into the cognitive process(es) of interest.

5 �The researchers distinguished between (a) top-down comprehension, where readers are familiar with a program’s domain and can pull in knowledge about that domain, and 
(b) bottom-up comprehension, where programmers encounter a program cold for the first time and must rely on decoding the program line-by-line. The focus of the study 
was on the latter.



acm Inroads • inroads.acm.org  37

ARTICLES

Support for the assertion that programming language fea-
tures are not just language-like, but actual language came from a 
recent fMRI study which found that even operations appearing 
to resemble those of language will not activate language-pro-
cessing regions. This study sought to answer the question 
“whether natural language provides combinatorial operations 
that are essential to diverse domains of thought.”

We addressed this issue by examining the role of linguis-
tic mechanisms in forging the hierarchical structures of 
algebra. In a 3-T functional MRI experiment, we showed 
that processing of the syntax-like operations of algebra 
does not rely on the neural mechanisms of natural lan-
guage. Our findings indicate that processing the syntax 
of language elicits the known substrate of linguistic com-
petence, whereas algebraic operations recruit bilateral 
parietal brain regions previously implicated in the rep-
resentation of magnitude. This double dissociation argues 
against the view that language provides the structure of 
thought across all cognitive domains. [23]

The second methodology used by the Siegmund study that 
buttresses its reliability is related to a major statistical error af-
fecting the validity of fMRI data analysis reported by Eklund 
et al. two years later [12]. The error resulted from a fallacy in 
the correction for multiple comparisons in the fMRI process. 
Studies that had used any of three common software packages 
for fMRI analysis yielded false-positive rates up to 70%, raising 
concerns about the reliability of the over 40,000 already pub-
lished fMRI studies. The Siegmund researchers were unaffected 
by this error for two reasons: (a) they had used analysis software 
that avoided these problems; and (b) they performed a further 
statistical correction to guard against any false discovery rate. 
Details can be found in the Data Preparation and Analysis Pro-
cedure sections of their paper [30].

Regarding implications, the results of the Siegmund study 
have a direct bearing on what is known as the novice pro-
grammer failure problem. For four decades, the literature has 
documented large numbers of novice programmers failing 
post-secondary introductory programming courses [3,18,33], 
so much so that the problem has been called “one of the seven 
grand challenges of computing education.” [22] Indeed, it might 
be said that the phenomenon is not so much a problem as a 
feature of these courses. It is no exaggeration to say that the 
situation is many times worse at the secondary level, where the 
majority of students steer clear of such classes—2017 enroll-
ments in the AP Computer Science A course were not even 
one-fifth the numbers of those who took AP Calculus [7], it-
self an elite course enrolling less than 10% of all high school 
seniors. Virtually all instructors of introductory programming 
courses have firsthand experience with this “grand challenge,” 
finding themselves both unable to explain how the “high-fli-
ers” in their classes seem to understand programming from the 
get-go, while simultaneously at a loss to provide effective help 
for those who seem to struggle perpetually. CS educators have 

for the brain recognizing the programming language features 
evaluated in the Siegmund study, including loop iteration, as 
language. Because the programs studied were no longer than 20 
lines, not all programming language features were tested (e.g., 
method calls and recursion), and it may be the case that certain 
programming language features will require other mental mod-
els besides language. Nevertheless, it appears safe to assume 
that the basic components of programming language grammars 
are processed cognitively as language.

Long before fMRI was routinely used to map cognitive tasks 
to specific brain regions, the major language processing regions 
of the brain (including the ones implicated in the Siegmund 
study) had already been mapped—identified anatomically in 
postmortem patients with aphasia disorders—injuries to the 
brain that affect expressive/productive and/or receptive/com-
prehension-related aspects of language processing. The confir-
mation and additional detail of these mapped language func-
tions provided later by advances in brain surgery (1950s) and 
fMRI technology (1990s) make these among the most reliably 
known areas of the brain.

Two methodologies used in the Siegmund study vouch for 
the validity of its results. First, the selection of the control task 
used to reduce background activations—in this study, asking 
subjects to identify syntax errors in virtually identical pro-
grams—was tested in pilot experiments along with other can-
didate tasks, and found to be a good compromise between its 
resemblance to, and dissimilarity from, the experimental task 
of trying to understand—make sense of—the program. If ac-
tivations of language regions occurred due to incidental or pe-
destrian aspects of the task, these would factor out when acti-
vations from the control task were subtracted. In the words of 
the research team: 

The most difficult issue in fMRI studies and most other 
studies that evaluate cognitive processes is to select suit-
able material and tasks (that is, source code in our case) 
and devise control tasks that control for brain activation 
elicited by processes that are needed for programming, 
but are not specific for it, such as reading itself. It is im-
perative that source code and tasks without a doubt lead 
participants to use the cognitive process that is the target 
of the evaluation, because otherwise, we cannot be sure 
what we measure (i.e., ensure construct validity). [30]

In a subtraction protocol, the control task acts like a mask 
to filter out activations not specific for the cognitive task one 
wants to isolate. Interestingly, other fMRI protocols have been 
constructed for answering questions beyond the sole mapping 
of cognitive tasks. In one case, to investigate the subtler distinc-
tion of whether syntax is “autonomous” from other features of 
grammar, Moro devised a protocol that could distinguish be-
tween syntactic errors and errors unrelated to syntax. He found 
that specific nets/networks of interacting regions—not mutu-
ally exclusively regions themselves (“pure locationism”)—were 
associated with the different kinds of errors [25].
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sults show that there are clearly similarities in brain acti-
vations that show that the hypothesis is plausible. [1]

Kästner was, of course, both cautious and modest in his 
claims. CS educators, however, currently operate with no evi-
dence-based cognitive model for how students learn to program. 
When partial models have been invoked, they have generally 
presupposed the involvement of psychological constructs—
such as that “cognitive loads” are lowered with drag-and-drop 
programming interfaces like Scratch or Alice—without having 
done research (i.e., taking experimental measurements) to cor-
roborate such assumptions. Likewise, it has been assumed—
but never demonstrated—that programming concepts and 
skills learned using tools like Scratch or Alice transfer to text-
based languages.6

Given the results of the Siegmund study, however, a cogni-
tive model for how students learn to program can now be built 
on how the language regions of the brain acquire programming 
languages. For instructors, knowing that fluent programmers 
process programming languages like natural languages, peda-
gogies can be crafted to attempt to facilitate this physiologi-
cal outcome. A natural starting point would be an exploration 
of both Second Language Acquisition theory and the implicit 
instructional strategies currently used by foreign language in-
structors. A note of caution—although second language edu-
cators have decades of experience and knowledge about how 
their students learn and the obstacles they encounter, there are 
major differences between natural languages and programming 
languages that make instructional strategies used in the foreign 
language classroom impossible to use (these differences are dis-
cussed below). That said, many of these strategies can be adapt-
ed; that is, there is no reason why the cognitive language goals 
and principles underlying those strategies cannot inform intro-
ductory programming language instruction in valuable ways.

In addition, fMRI technologies may theoretically provide 
a way to cognitively measure whether new (and old) instruc-
tional strategies facilitate the acquisition of programming lan-
guage proficiency. Several recent studies support a model for 
learning second languages in which brain organization chang-
es/evolves over time. Moderately proficient language learners 
at first recruit anomalous regions of the brain not ordinarily 
used to routinely process language. In contrast, highly pro-
ficient second language learners utilize the same regions for 
both native languages and second languages [8,15,35]. A very 
recent study that investigated the distinct neuronal activations 
differentiating code review, prose review, and code compre-
hension tasks also found a similar pattern—that the brains of 
participants with greater programming expertise treated pro-
gramming languages more like natural languages [13]. Should 
further research confirm such patterns for programming lan-
guage learners, we should be able to not just demonstrate that 

long blamed student failure on a lack of talent or work-ethic, 
despite the decades-long inability of researchers to pinpoint the 
involvement of such traits, or the inconsistent and inconvenient 
fact that their failing students may excel in other subjects. Only 
rarely have instructors considered the possibility that the fault 
may lie with their own instruction.

Siegmund’s team, however, recognized the pertinence of 
their findings to this long-standing problem.

…our research will have a broad impact on education, so 
that training beginning programmers can be improved 
considerably. Despite intensive research (e.g., Technical 
Symposium on Computer Science Education, Innova-
tion and Technology in Computer Science Education), 
it is still rather unclear how and why students struggle 
with learning programming. With a detailed understand-
ing of the cognitive processes that underlie a developers’ 
every-day task, we might find the right recipe to teach 
any student to become an excellent software developer 
(e.g., by including training language skills, since our study 
showed a close relationship to language processing). [31]

PART II:  
IMPLICIT LANGUAGE LEARNING STRATEGIES

Beginning in 2013, I began to alter instruction in my intro-
ductory (pre-APCS-A) programming course by requiring my 
inner-city high school freshman to memorize short programs 
and program fragments. What I observed is that they stopped 
making syntax errors seemingly overnight. This also resulted in 
an upswing in overall motivation in all students, but particu-
larly in the ones who typically would have failed to learn much 
of anything at all. This phenomenon is anecdotal, but dramatic 
and unmistakable, and has been consistent year after year. This 
instructional strategy can be understood within a theoretical 
context of implicit language acquisition (discussed below).

I therefore offer the conjecture that the cause of the per-
sistent novice programmer problem is not some mysterious 
defect in our students, but rather a gaping defect in the ped-
agogic model, one that has discounted the importance of lan-
guage acquisition issues. No one would expect algebra students 
who lacked foundational mathematics skills to be able to solve 
simultaneous equations. It is equally as ludicrous to expect stu-
dents who have trouble acquiring basic literacy in a program-
ming language to be able to compose programs whose logic is 
mediated by that same language. The corollary is that a pedago-
gy that can devise effective language acquisition strategies while 
accounting for the peculiarities of an artificial language should 
allow the clear majority of students the possibility of becoming 
proficient programmers.

CMU Professor Christian Kästner, the Siegmund study’s 
second author, stated in an interview:

There is no clear evidence that learning a programming 
language is like learning a foreign language, but our re-

6 �“It [computing] won’t make you better at something unless that something is 
explicitly taught, said Mark Guzdial, a professor in the School of Interactive Computing 
at Georgia Tech who studies computing in education. ‘You can’t prove a negative,’ he 
said, but in decades of research no one has found that skills automatically transfer.” [26]
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spread agreement among SLA theorists that second languages 
are learned implicitly as well, the age of the learner notwith-
standing.7 The role of explicit grammar instruction in foreign 
language instruction is supplemental: (a) as reinforcement for 
implicit learning; (b) to help second language learners correct 
language features that were imperfectly learned; and (c) as an 
aid to improve literacy. Exclusively explicit foreign language 
teaching models, indistinguishable from those CS educators 
currently use, were abandoned over three decades ago, with 
implicit communicative and immersive learning taking their 
place. A considerable amount of evidence has also accumulated 
showing that implicit language instruction results in conscious 
linguistic knowledge in addition to automaticity [14].

Human language is an innate, highly specific cognitive abil-
ity quite distinct from general intelligence. Evidence support-
ing this view includes (as already mentioned) brain localization 
of language processing; pathologies and genetic disorders that 
specifically target language without affecting general intelli-
gence; and the opposite—severe retardation that leaves linguis-
tic abilities intact; and an optimal age-related developmental 
window after which language learning becomes more effortful 
and difficult. As such, languages are said to be acquired, not 
learned [16].

The difficulty with trying to adapt communicative instruc-
tional approaches for programming languages is that, because 
they exist solely in written form—i.e., they are unspoken—there 
are no communities of speakers to interact with. As such, mech-
anisms comparable to those for acquiring natural languages sim-
ply do not exist. How then do those students who become profi-
cient programmers manage to acquire programming languages, 

novice programmers increasingly utilize brain regions classi-
cally associated with language as they become more proficient, 
but also be able to use that model to assess the effectiveness of 
instructional strategies. 

A cognitive model that emphasizes language acquisition 
would thus have great explanatory potential, allowing research-
ers to make and test predictions. Such a model does, howev-
er, come with several significant challenges. The least difficult 
of these are scheduling changes, specifically lengthening the 
amount of time allotted to students to become proficient in the 
use of a programming language. The reason is simple enough—
it is unrealistic to expect significant competence in any lan-
guage after a single college semester or year-long high school 
course. An obvious corollary would be to teach one language 
and one language only until proficiency is acquired (2-3 years 
in high school, 1-2 years in college). The not uncommon prac-
tice of switching programming languages every semester makes 
about as much sense as a program of instruction that mandates 
one semester of French, followed by a semester of German, 
then a semester of Russian. Indeed, the designer of such a cur-
riculum would be sacked for the obvious—that it is impossible 
for students to acquire even bare competence in any of these 
languages in such a short period. The fact is, subsequent lan-
guages are easier to learn having first gone through the process 
of comprehensively learning a single second language. The case 
is even stronger for programming languages— because they 
all implement the same set of control and data mechanisms in 
very similar ways, the task of learning a second programming 
language for those with in-depth knowledge of a first program-
ming language is more like learning a dialect than an entirely 
new language.

A much more challenging matter is unearthing the kinds 
of learning conditions and implicit instructional practices that 
might facilitate the process by which programming languages 
are better acquired. In fact, a working definition of such ped-
agogies would be those that facilitate programming languages 
taking up physical residence in the language processing regions 
of a novice programmer’s brain. In addition to this physiolog-
ical metric, such strategies should also facilitate performance 
metrics like fluency/automaticity.

The current Prescriptive Linguistics model of programming 
language instruction generally proceeds as follows: (a) the in-
structor explains the syntactic/grammatical rules associated 
with data and control structures; (b) she works through ex-
amples that demonstrate language usage; and (c) she provides 
students practice via problem-solving exercises. However, this 
explicit instructional model is not one that has been found to 
help most learners acquire and become proficient users of a 
second language.

Learning one’s primary/native language—whether spoken 
or signed—occurs implicitly (passively, subconsciously, auto-
matically) through repetitive exposure to language data and 
meaningful interaction with other speakers. It does not occur 
through the explicit (conscious, active, intentional) inculca-
tion of and practice in applying linguistic rules. There is wide-

7 �For second languages, “early word and grammar learning relies on declarative memory 
(and more explicit processes), but that grammar later relies on procedural memory 
(and more implicit processes).” [32]

An obvious corollary would be 
to teach one language and one 
language only until proficiency 

is acquired ... The not uncommon 
practice of switching programming 
languages every semester makes 
about as much sense as a program 
of instruction that mandates one 
semester of French, followed by 

a semester of German, then a 
semester of Russian.
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about one year, currently more time than the CS introductory 
instructional model provides. Implicit learning strategies have 
for three decades been the most effective and efficient ways to 
facilitate the acquisition of both receptive and expressive fluen-
cy and automaticity in second languages, and there is much that 
programming instructors can learn and adapt from foreign lan-
guage teaching goals and principles. Indeed, models of instruc-
tion that fail to give sufficient import to the central cognitive 
role that language plays for students of programming languages 
should be considered intellectually suspect. Although a peda-
gogic model that adds early implicit language instruction would 
be a partial shift in instructional paradigms, requiring a bit of 
rethinking as to how we teach the subject, it is not particularly 
complicated to implement. Such a model would, however, defy 
CS educators to jettison long-held, but ultimately unfounded 
assumptions about how their students may learn—and how 
they themselves might have learned—to become proficient us-
ers of a programming language. 

PART III:  
CS INSTRUCTION AT THE SECONDARY LEVEL
Although adding implicit language instruction may increase and 
widen access to the introductory postsecondary programming 
curriculum, the greatest potential for progress lies at the sec-
ondary level, where, aside from elite school settings, CS educa-
tion has been an ongoing and futile cycle of implementing—and 
then discarding—one ineffective curriculum after another. The 
failure has been due to the near exclusive focus of innovation on 
the content side of curriculum, with little thought given to how 
methodologies can effectively deliver that content. While the po-
tential of a curriculum’s content to generate interest is vital, if 
that content cannot be delivered in a way that will impart self-ef-
ficacy—a student’s confidence in her ability to compose novel 
working programs on her own—no amount of interest will suf-
fice to convince her to continue study in the field. 

Since Sputnik, secondary education has offered an increasing 
number of college-level courses in math and science as a way to 
jump-start study of those fields before college. In recent years, 
and with goals similar in spirit to the social efficiency education 
movement of the first half of the 20th century, the CISE Director-
ate in the National Science Foundation (NSF) has promoted the 
idea that high school CS education is both a bridge to the study of 
CS in college and a critical part of a pipeline for ultimately filling a 
huge number of domestic computing job vacancies.

seemingly without great difficulty? However it occurs, an SLA-
based cognitive model would predict—because repetitive ex-
posure and meaningful interaction appear to be the sole route 
by which natural languages are acquired—that these principles 
must somehow operate in how these students learn as well.

One example that corroborates the effectiveness of implic-
it language instruction is the memorization teaching strategy 
mentioned earlier. Note that in employing this strategy, the only 
direction given students is that they memorize the material 
perfectly—they are given no overt instruction for how to form 
syntactically correct statements. Nevertheless, the result is that 
students become able to compose programs without the kind of 
syntax errors that lead to compiler errors, the earliest obstacle 
reported for novice programmers [17]. The following is a possi-
ble mechanism. To memorize a program or program fragment 
perfectly, students must employ numerous cycles of (a) reading 
the material and (b) writing it out without looking. This process 
bombards their brains repeatedly with idealized language data. 
As with natural languages, the brain subconsciously generaliz-
es from the patterns in the data and implicitly constructs the 
syntactic rules (the grammar) for the programming language 
[28]. Those who would dispute this kind of implicit mechanism 
would need to explain how memorization subsequently allows 
students to (a) compose new programs with syntactically cor-
rect sequences of programming statements, as well as (b) iden-
tify syntax errors in novel programs.

It is important to note that it is not at all being claimed that 
other pedagogies used in programming education should be 
abandoned—although the literature for the past four decades 
has not revealed any instructional strategies to have made a 
dent in the novice programmer failure problem. Rather I hope 
to encourage others to modify the programming language 
course to initially use implicit pedagogies focusing on language 
in order to lay a linguistic foundation on top of which tradition-
al pedagogies that focus on logic and problem-solving can sub-
sequently take root. I myself limit the use of most SLA-based 
instructional strategies to the first year—the introductory (pre-
APCS-A) programming course. Students who continue in the 
subsequent APCS-A course, although far from being fluent 
programmers, have acquired enough of a comfort level with 
Java that traditional strategies can be used—with the caveat 
that my problem-solving philosophy is informed by an SLA-
based teaching framework, as described in Part V.

The Siegmund study unambiguously documented the first 
neurocognitive evidence pertinent to CS programming educa-
tion. Although the results should have precipitated a frenzy of 
ongoing discussion and inquiry, they were instead met with a 
blip of interest that quickly dissipated. A few follow-up studies 
by other researchers are only now beginning to trickle in, but 
crucially, there has been no effect on CS education. CS educa-
tional pedagogy has from the start been modeled after mathe-
matics instruction, with a primary focus on problem-solving. 
What has been ignored, however, is that learners must first ac-
quire basic proficiency in the programming language that medi-
ates the logic required for problem-solving, a process that takes 

The Siegmund study  
unambiguously documented  

the first neurocognitive  
evidence pertinent to  

CS programming education.
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sight, CSTA’s five-strand framework, an abrupt break from the 
young organization’s past positions, can be seen as an apologet-
ic—a rationale/justification for giving up on the goal of rigorous 
programming instruction at the secondary level because of the 
massive failure of educators to effectively teach programming 
to the vast majority of high school students.9 

As a replacement, CSTA has instead promoted two second-
ary survey courses, Exploring Computer Science (ECS) and 
AP Computer Science Principles (AP CSP), whose contents 
conform to CSTA’s new, but questionable, framework. From 
the start, the rationale for both courses has been to “broaden 
participation in Computer Science.” The two courses, however, 
have been designed to merely expose students to their content 
and stimulate interest, as opposed to delivering substantial and 
measurable skills that will vertically prepare students for sub-
sequent programming study, the way an Algebra 1 course lays 
a conceptual foundation that prepares students for the Algebra 
2 course. This is a direct consequence of the nature of survey 
courses, which place emphasis on coverage at the expense of 
depth. However, it’s unclear that the contents of these courses 
have much value, in practice resembling not so much a carefully 
designed sequence of fundamental concepts (as they claim) as 
a smorgasbord of unrelated topics that can be replaced in the 
event they prove too difficult for students to learn. In contrast, 
a survey course might better reflect the field through an over-
view of the most important contemporary developments in the 
subfields of Computer Science—Artificial Intelligence, Robot-
ics, Machine Learning, Big Data—emphasizing in particular 
their real-world applications. Such a course might also include 
important engineering and cross-disciplinary applications, in 
areas like DNA Sequencing and Analysis (Bioinformatics), Mo-
lecular Modeling, Routing, Astronomy, Linguistics, Journalism 
and Art. Although in my view this would give students a more 
realistic and engaging look at the field, it’s impossible to really 
cover these topics in anything other than a very simplistic way if 
students have no appreciable programming proficiency.10 

There is also a substantial pedagogic problem with both ECS 
and AP CSP, in that no level of excitement or interest will con-
vince students to continue study in any subject if they don’t also 
have an authentic sense of self-efficacy, a confidence in their 
ability to correctly apply concepts and skills studied to similar, 
but novel, situations. Because the courses treat programming 
as only one of many topics, they unfortunately do as little to 
prepare students for a subsequent programming course as an 
introductory course on French culture and literature in transla-
tion would for students following up with a second year French 

The APCS-A course in fact fits these goals—longitudinal 
studies completed by the College Board in the past decade have 
confirmed the course’s effectiveness as a bridge to CS study in 
college [21,24]. There have, however, been long-standing prob-
lems that continue to limit the course’s influence. APCS-A may 
be the equivalent of a one-semester introductory college lev-
el class, but at the secondary level it plays out in practice as 
a highly accelerated programming curriculum, even over the 
course of an entire year. To complicate matters, the course has 
no programmming prerequisite, attributable in part to the lack 
of standardization of secondary programming curricula—aside 
from the APCS-A course itself. Both factors have made it a 
poor entry point for the vast majority of students, inequitably 
skewing its demographics towards a subset of the most aca-
demically talented, and ensuring low overall enrollment num-
bers.8 Notwithstanding, it is, however, an appropriate second 
year programming language course for those who have taken 
and passed a rigorous introductory pre-AP programming class.

As such, the need has always been for an introductory pro-
gramming course that aligns vertically with APCS-A, and that 
utilizes instructional strategies that can credibly prepare stu-
dents for that next course. Although this may seem unremark-
ably obvious, an alternate narrative that has emerged during 
the past decade at the secondary level actively downplays the 
importance of learning to program. Deemed as a corrective to 
the “programming-centric” focus of the APCS-A course, the 
Computer Science Teachers Association (CSTA) codified a 
framework of five co-equal strands. This new scheme, however, 
has its problems. Programming (subsumed in a strand called 
Computer Practice and Programming) was unconvincingly 
separated from Computational Thinking (algorithms, abstrac-
tion, and the like) [10], with the result that some secondary cur-
ricula (e.g., Exploring Computer Science) attempt to teach algo-
rithms, such as sorting, before students have learned anything 
about data structures or programming, leading one to question 
not only the superficial level of rigor of such instruction, but 
the point of presenting such material at all when it is devoid of 
meaningful contexts. Moreover, a strand called Collaboration 
implausibly occupies a space just as important to the study of 
CS as each of the other four strands. In a mathematics con-
text, this would be the equivalent of arguing that group work—a 
teaching strategy—is a learning objective equally as vital as the 
content of any major topic in the Algebra 1 curriculum.

This scheme was promoted despite the broad postsecond-
ary consensus that programming be the first topic of study in a 
college CS curriculum because of its role as the core skill fun-
damental to the entire discipline, crucial for understanding and 
plumbing topics—particularly algorithms—in virtually all sub-
sequent coursework on anything beyond a trivial level. In hind- 9 �For a fuller and more detailed critique of the CSTA framework, see Appendices B and 

C of reference [28].
10 �In practical terms, what these courses do is eerily reminiscent of the mathematics track 

system of previous decades in which college-bound students took a math sequence 
culminating in calculus and pre-calculus, while students not bound for college took 
a general mathematics sequence terminating with pre-algebra.  In this parallel 
incarnation for secondary CS instruction, one tier (APCS-A) teaches programming 
while the other (AP CSP and ECS) doesn’t, with obvious implications for students’ 
college readiness should they undertake subsequent CS study.  Ironically, these survey 
courses simply recapitulate the very inequities they were intended to eliminate [28].

8 �Interestingly, it has been assumed that the demographic inequities are skewed only 
against females and traditionally underrepresented minorities in favor of white and 
Asian males.  However, when one considers the very low enrollment numbers, a more 
nuanced—and probably more accurate—view is that the white and Asian males in CS 
courses are a subpopulation, and that the majority of white and Asian males similarly 
fail to participate.



42  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

tral place of programming in the secondary CS curriculum. Note 
that the confusion introduced by these courses could only take 
root within a secondary teacher workforce whose subject-matter 
competency is rarely higher than the coursework found in a first-
year CS college-level program—and most often not even that. 
Even were consensus on the primacy of programming to be rees-
tablished, proven pedagogies for effective programming language 
instruction—ones that can ensure that grade-level students can 
make progress in acquiring programming skills and concepts—
remain non-existent. This pedagogic deficiency completes the vi-
cious circle, because whatever teaching techniques and strategies 
CS credentialing programs might train prospective teachers in 
would be purely speculative.

In my experience, implicit language instruction appears to 
be a—if not the—crucial missing piece of programming lan-
guage pedagogy, and I hope to encourage researchers to inves-
tigate this approach. At the same time, should this prove to be 
the “magic bullet,” I would remind instructors that acquiring 
proficiency in the use of a second language is a lengthy and 
gradual process. Utilizing such instruction should produce 
noticeable and ongoing improvements, but it will not make 
all students programming wizards overnight. What I witness 
in my classes, though, is that implicit language instruction, 
contrary to the traditional Prescriptive Linguistics model, 
provides the scaffolding necessary for grade-level novice pro-
grammers—particularly those who are prone to struggle—to 
progress and learn.

PART IV:  
CHOOSING WHICH LANGUAGE FEATURES TO 
TEACH
Because the syntactic footprints of programming languages are 
small, it may seem that learning to use them should be uncom-
plicated and obvious. In my experience, though, only a pro-
gramming language’s basic syntactic features, the ones whose 
errors obstruct compilation, are easily imparted—using the 
memorization strategy discussed earlier. It takes a much longer 
time to acquire the semantics of a programming language—the 
knowledge that enables one to write efficient, concise, and clear 
programs. Generally, such proficiency takes a minimum of two 
years for the most talented students. The difficulties can be 
attributed to a handful of characteristics peculiar to program-

language class, thereby postponing the many difficulties that 
they will invariably encounter as novice programmers. The two 
courses have certainly demonstrated that they can broaden par-
ticipation, but that participation comes at the cost of academic 
rigor and preparedness, exchanging these for a watered-down 
version of CS of questionable utility and relevance.11 

An introductory pre-APCS-A programming course, the first 
of a two-year programming sequence that culminates in an ad-
vanced version of APCS-A, has in fact been taught for years 
at the highly selective magnet Thomas Jefferson High School 
of Science and Technology (TJHSST), where freshmen with no 
programming background take the Foundations of Computer 
Science pre-APCS A programming course (“classes & objects, 
loops, if, arrays, files, graphics”) and in their sophomore year 
take APCS plus Data Structures. Note that although these 
freshmen are highly gifted students conforming to the tradi-
tionally inequitable demographic, their instructors have made 
the judgment that they still require the benefit of a pre-AP 
programming course to maximize success in APCS-A. The 
problem remains that, were such a pre-APCS-A programming 
course to be implemented in less elite educational settings, in-
structors and students would—again—run up against the nov-
ice programmer failure problem because of inadequate peda-
gogic strategies.

There are also political and structural considerations. Al-
though a host of groups and organizations, such as ACM and 
Code.org Advocacy Coalition, have argued that CS should be 
included in the K–12 core curriculum, state boards of education 
have not been convinced. Part of the problem stems from the 
boards themselves, which have failed to create CS credentials,12 
resulting in an absence of credentialing programs and a dearth of 
9–12 subject-matter competent instructors (i.e., those possessing 
a B.S. in the field or the equivalent, as has been the norm in coun-
tries such as Israel13). As such, most public schools still rely on in-
structors with minimal knowledge of the subject. There are also 
curricular challenges. The content of secondary CS courses varies 
enormously, a problem exacerbated by the new survey courses, 
which have also fractured the long-held consensus about the cen-

11 �As survey courses that contain some very simplistic programming units, ECS and AP CSP 
can only claim to give its participants a superficial exposure to programming concepts.  
Although, to their credit, some versions of AP CSP (e.g., Beauty and Joy of Computing) 
do focus almost exclusively on programming competence, these curricula make no 
substantial inroads into solving the novice programmer failure problem, carrying on the 
long secondary educational tradition of ineffective programming instruction.

12 �In 2016, California’s CTC (Commission on Teacher Credentialing) created a CS 
supplemental authorization, but not a full CS credential that would have weight 
comparable to, say, a Math or Science credential.  The authorization requires separate 
courses in five “content areas”: Computer Programming; Data Structures and 
Algorithms; Digital Devices, Systems and Networks; Software Design; and Impacts 
of Computing (which can be counted if covered in courses from the first four areas).  
Although this is a significant improvement, it still falls far short of the range of topics 
that an undergraduate would study for a CS major [5].

13 �The importance of setting the minimum content knowledge for a secondary CS 
instructor to the equivalent of an undergraduate major in the field cannot be 
emphasized enough.  Those who simply know the basics of programming are missing 
not only experience in designing mid-size to large software applications, but crucial 
knowledge about the ways that CS can be applied to a host of problems in subfields 
within CS proper, as well as in disciplines across the academic spectrum.  Both impact 
not only a teacher’s ability to make course content relevant to her students, but her 
ability to imagine and design instructional material that can illustrate the vast cross-
curricular reach of CS.

In my experience, implicit language 
instruction appears to be a—if 

not the—crucial missing piece of 
programming language pedagogy, 

and I hope to encourage researchers 
to investigate this approach.
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by which the values of arguments in a method call 
are passed to the parameters of a method definition. 
An intermediate or underlying form of the method 
heading (not existing in the grammar) that shows the 
explicit assignment of argument values to parameters 
(analogous to transformations in the original Chomskyan 
Transformational Grammar model) better explains this 
mechanism, making it visible and concrete.14 Similarly, the 
for-loop is an abbreviated notation for repeating (however 
many times) the statements in its body. Explicitly writing 
out these repetitions helps to elucidate how the three parts 
of a for-loop operate when students first begin to work with 
this abbreviated control structure.

3. �Ongoing exposure: optimally solving a paradigmatic 
problem repeatedly to better cement it in memory as an 
archetypal solution.

Many curricula will begin the topic of conditional execu-
tion by presenting three patterns of if/else statements that (a) 
have varying degrees of mutual exclusivity and (b) a different 
number of branches that can be theoretically executed. These 
two properties are logically implicit in the syntactic structure of 
each pattern (Tables 2A, 2B, 2C).15 

Typically, a few examples and counterexamples to illustrate 
these patterns may be given (Tables 3A, 3B, 3C).  Note the logical 
error in the counterexample of Table 3A—the implication is that 
the error is structural, attributable to the cascading if-statements. 
However, the error can be corrected by simply reversing the or-
der of the first four if statements (Table 4A). Interestingly, the 
error will be reintroduced should one supplement this fix with 
if-else statements (Table 4B). When the cascading if-statement 
pattern is placed inside a method—an environmental change—
the Table 3A error can also be fixed if each branch returns the 

ming languages. First, the control structures of programming 
languages—primarily conditional execution and iteration—are 
semantically broad and diffuse. One narrows meaning—i.e., 
performs tasks with specific accuracy—by arranging control 
structures in specific sequences, and most often in combina-
tions with specific variables and/or data structures. Second, 
structured programming languages employ user-defined meth-
ods (with and without parameters), which add a third dimen-
sion of hierarchy overlaying the main body of sequential state-
ments. Hierarchy such as this has no counterpart in natural 
languages, which are strictly sequential. Third, programming 
languages make use of nested syntactic blocks, a form of com-
plex recursion (in this case center-embedding) that is theoreti-
cally possible in natural languages, but which in practice is all 
but impossible for people to process and understand. Fourth, 
as previously mentioned, the semantics of natural languages 
are acquired by interacting with native speakers. Programming 
languages are unspoken—hence there are no communities of 
“speakers” with which to interact. This last point is probably 
the most significant obstacle for educators who would like to 
adapt contemporary foreign language teaching techniques for 
programming language instruction.

How, therefore, would one go about constructing effective 
instructional strategies within the context of an implicit lan-
guage-teaching approach, and what would they look like? This 
section will, as an example, discuss factors for deciding how 
to modify the teaching of an early introductory programming 
topic—conditional execution. For those interested in strat-
egies for teaching the semantics of other language features, 
three that have been described previously [28] are listed here. 
1. �Setting components in relief: focusing on specific features 

and using them in different contexts or environments to 
highlight distinctions in meaning. Although like Variation 
Theory [20], the key difference is that learning in a 
linguistic model is implicit. This strategy also includes the 
use of counterexamples.

2. �Transformations: underlying or expanded intermediate 
syntactic forms posited or invented to explain abbreviated 
syntactic features of programming languages whose 
mechanisms of operation are implied. For example, 
students are often confused about the mechanism 

14 �Consider a method definition Polygon getPolygon (int nSides) and its corresponding 
method call getPolygon (6). One can posit an intermediate/underlying form linking 
the two statements:  
    Polygon getPolygon (int nSides = 6). To turn this into an exercise that students can 
compile and run, the assignment statement within the parentheses of this invented 
underlying method heading can be moved down (or demoted) to the method body, 
appearing as the more familiar declaration of a local initialized variable. Note that this 
strategy also clarifies how parameters behave like local variables [28].

15 �The examples in Tables 2 and 3 are taken from Chapter 4 of Building Java Programs 
[29].
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com website. A method containing a nested if-else within an 
outer else statement (Table 6A) can be rewritten using an equiv-
alent non-nested (i.e., flat) three-part if—else-if—else structure 
(Table 6B). These can be collapsed to a single if-statement, a 
compound Boolean expression, and two return statements  
(Table 6C). The most compact version uses a single return state-
ment and this same compound Boolean expression (Table 6D).

One can go on and on. The point is that the complexities 
of if-else structures arise because their correct functioning is 
dependent upon the interaction of logic, syntax and environ-
ment (e.g., inside a method). More specifically, program logic 
is distributed among two layers—the syntax layer that governs 
structural aspects of mutual exclusivity and flow of control, and 
the content layer that uses Boolean expressions to mediate the 
program’s specific logic. What should be clear to any instructor 
who thinks about pedagogic issues is that this kind of discus-
sion cries out for simplification and scaffolding. The alternative 
is to cause unnecessary confusion for students.

As it happens, all if-else statements—except for those that 
modify the value of the determining condition variable itself16 — 
can be rewritten as cascading if-statements. As an example, Ta-

letter grade (Table 4C); note that this is an alternate mechanism 
for enforcing mutual exclusivity. The error, however, will not be 
corrected in a method that maintains the grade variable, with a 
single return statement at the method’s end (Table 4D).

Unfortunately, the fixes in Tables 4A and 4C are themselves 
counterexamples, because from a maintenance perspective, 
a design independent of statement order is preferable to one 
where a change in the order will introduce logical errors. Note 
that the examples in Tables 5A and 5B provide this exact fix—
they enforce mutual exclusivity through Boolean logic alone by 
using non-overlapping conditions that cover all possible cases, 
rendering the order of the if statements inconsequential. Pro-
grammed in this manner, it doesn’t matter which of the three 
patterns from Table 2 is used—any mutual exclusivity contrib-
uted by the syntax layer will be redundant/superfluous.

Although the logical implications regarding the examples 
in Tables 2–5 may appear obvious to experienced program-
mers, they are described here in detail so that one might better 
appreciate how complex and daunting the possibilities might 
appear to be students who must juggle this information when 
encountering such ideas for the first time. Consequently, one 
might begin to wonder what is gained by including if-else 
statements in an initial discussion of conditional execution.

To exacerbate this conceptual overload, consider the com-
plexity were one to now add a discussion of nesting and com-
pound Boolean expressions comprised of independent condi-
tions. As an example, Tables 6A-6D show possible solutions to 
the very first problem in the Warmup section of the codingbat.

16 �When toggling a boolean condition variable: 

if (pass) { pass = false; }	 if (pass) { pass = false; } 
else { pass = true; },	 if (!pass) { pass = true; }
the cascading-if “equivalent” would be :	 which always sets pass to true.

In such cases, one can opt for a toggle statement: pass = !pass. Note, however, 
that such examples can demonstrate the structural necessity of if/else mutual 
exclusivity, as well as switch statements for condition variables having more than two 
values, when they are introduced later.
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family relationships, shopping, sports, vacationing, and the like. 
Each unit dialogue introduces pertinent vocabulary, phrases, 
idioms and verbal exchanges typical for what one might expe-
rience outside the classroom, as well as the grammar structures 
one might use, increasing in difficulty as the course progresses. 
In the classroom proper, there is an abundance of talking and 
listening, based on the verbal exchanges modeled in the unit 
dialogue. A host of exercises provide for extensive practice of 
the material in all four communicative areas—listening, speak-
ing, reading, and writing. Later units may contain two or three 
related model dialogues, each with its own practice exercises. 
Each unit concludes with assessments that measure how well 
the material has been learned in the four communicative areas.

One much used exercise in a foreign language curriculum is 
the substitution drill. To practice listening and speaking skills, the 
instructor might pair off students and have them repeat ques-
tion-rejoinder patterns while substituting different vocabulary 
items. The drill bolsters both vocabulary and syntactic patterns.

Q1: Do you prefer milk or orange juice? 
A1: I prefer orange juice [milk].

Q2: Do you prefer bread or croissants? 
A2: I prefer croissants [bread].	 etc.

This may be followed by open-ended questions, e.g., 

Construct a four-sentence dialogue between you 
and a family member as you shop for groceries.

Substitution drills are also used to practice purely grammat-
ical features, e.g., noun-article agreement.

Nous pouvons acheter des oeufs. 
Tu veux du jambon? 
Avez-vous manger de la soupe?

The components in these units are crafted with two key 
principles in mind—repetitive exposure in varying contexts and 
meaningful communication. As mentioned in Part I, the learn-
er’s exposure to language features (data) that are used repeated-
ly, but in varied contexts, is the mechanism by which the brain 
implicitly discerns patterns that it then inductively generalizes 
into the syntax rules of an ever-evolving grammar. Meaningful 
communication is what propels this language acquisition pro-
cess. That is, the learner’s motivation to actively communicate 
is what both drives repeated attempts at communication un-
til her needs and wants have been successfully conveyed, thus 
honing correct language usage; and keeps her in a state of active 
listening and ongoing exposure to language data, spurring more 
cycles of the language acquisition process. In a programming 
language learning context, though, it makes no sense to say 
one can “communicate” with a computer. On the other hand, a 
computer does provide immediate program output—feedback 
as to how well the program is written. This ongoing cycle of 
intentional interaction on the part of the learner seems to be an 
effective substitute for meaningful communication, allowing for 

ble 7A shows a simple if-else statement, and Tables 7B and 7C 
show its logical equivalents (though the flows of control differ). 
Note that the patterns in Tables 7B and 7C require that vari-
ables be initialized (with a dummy value in 7B and the default 
value in 7C) to avoid compiler error—a software engineering 
practice worth encouraging anyway. An introduction to con-
ditional execution can thus focus on one syntactic form—cas-
cading if-statements. The concept of if-else can now become a 
refinement that can be postponed to a more advanced treat-
ment of the subject, much like switch statements and ternary 
expressions.

There are several pedagogic advantages to scaffolding the 
topic in this way. An introductory treatment of the topic will fo-
cus on the most important aspect of conditional execution—the 
use of Boolean logic to enforce mutual exclusivity. Second, con-
fusion due to the variety of ways that programming languages 
can express the same decision-making logic will be lessened. Fi-
nally, students will only have to learn a single pattern, the form 
in Table 7C,17 which can be used in all environments, including 
those where methods return values.

Aside from scaffolding, there are cognitive reasons specific to 
language learning that argue for this simplification as well. When 
children are learning their first/native language, the order in which 
syntax features are acquired is related to their stage of develop-
ment [6]. There is also a predictable order, related to difficulty, for 
features acquired by children learning second languages [11], and, 
it turns out, for adult second-language learners as well [2].18

In summary, this section has demonstrated that an introduction 
of the topic using the simplified case of cascading if statements—
which still retains a substantial, but now much reduced, amount 
of complexity—will provide students a basic, but usable, syntactic 
foundation for conditional execution, which they can later supple-
ment with more nuanced features that the language provides.

PART V:  
CURRICULAR STRUCTURE USING IMPLICIT 
LANGUAGE TEACHING METHODS
Having found a way to simplify and scaffold instruction for con-
ditional execution, how would one structure such a unit using 
an SLA-based teaching model?

A unit in a whole language curriculum taught using a com-
municative pedagogic approach opens with a brief dialogue con-
textualized in a specific social aspect of life, such as eating out, 

17 �Although the code fragment in Table 7C is preferable, the stilted, but more explicit, 
intermediate form in Table 7B, may have considerable explanatory value, particularly 
in a side-by-side comparison to if-else-statements when they are eventually taught. 
Those who would like their students to perform actions inside the if-blocks can 
instead set parameter values in the blocks and follow with a single action statement 
that uses those parameters.

18 �An interesting aside is that the authors of these last two studies concluded that the 
results were evidence for a second language acquisition process involving “creative 
construction,” not “habit formation.” Creative construction, a process involving 
hypothesis testing about the target language, is what is generally agreed to account 
for the primary mechanism underlying implicit acquisition of first/native languages. 
Interestingly, evidence of hypothesis testing in the learning of programming languages 
surfaced when I observed my students making certain novel syntax errors having to do 
with the direction of assignment of values to variables [28].
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guage classroom’s speaking and listening activities that reuse the 
material from the unit dialogue. Instead, using guided discovery, 
the instructor directs students to incrementally reconstruct the 
entire MPS (or a small portion of one of the larger MPSs) from 
scratch in a sequence different from how they were original-
ly guided to build it, specifying only how the partial program 
will function at each juncture, but not which parts of the MPS 
to use. The objective is that students will learn the function of 
the MPS’s constituent working blocks and get a better sense of 
how they fit together to achieve the program’s logic. At sever-
al points during the reconstruction, students are also asked to 
modify the output of the MPS, forcing them to tinker with the 
code and discover how key syntactic features work.21 Students 
go through several cycles of this exercise, reconstructing the 
same MPS, but each time in a different sequence and with dif-
ferent changes to the output. This strategy, setting components 
in relief, is a specific implementation of the principle of repeti-
tive exposure in varied contexts.

Instruction next focuses on giving students repetitive prac-
tice with a specific language feature. An example that uses 
transformational exercises asks students to convert indexed 
for-loops (that process members of an array) into equivalent 
statements that use hard-coded indices (Table 8).

Depending upon the unit, students might also construct in-
dividual variations of the MPS to let them explore their own 
creativity (with ongoing feedback from the instructor)—such 
exercises are extremely easy to implement when contextualized 
within the field of dynamic art. At unit’s end, the instructor 
formalizes the learning in a traditional way, whether through 
direct instruction, Socratic seminar, or the like. Having been 
steeped in the content of the unit for several weeks by this time, 
students will be better primed to appreciate both basic and sub-
tle details of what they have studied. A formal unit assessment 
of the knowledge and skills taught over the previous weeks will 
tell the instructor how successful instruction has been and what 
details might need to be retaught.

The counterpart to substitution drills for a programming 
language unit would be a series of exercises designed to pro-
vide practice in using one specific language pattern. Four pat-
terns illustrating the use of conditional execution used in the 
unit MPSs of the introductory CPRWE course appear in Ta-
bles 9A-9D.

What criteria determine exactly which patterns to teach? 
Patterns taught in traditional programming curricula are often 
designed to showcase pure logic, are frequently devoid of mean-
ingful application, and use pedestrian problems to illustrate 
flow of control. In contrast, like a second language communica-
tive model where the patterns taught are those used in the unit 
dialogues, the patterns in a similarly structured programming 
language course are drawn from the MPSs. The rationale for the 
content of the dialogues in a whole-language communicative 

the increasingly sophisticated understanding and acquisition of 
programming language skills. The probable reason for the ef-
fectiveness of this substitution is that the key feature shared by 
communication and interaction is the feedback to learners on 
how well formed their utterances/programs are.

In a programming language curriculum informed by foreign 
language pedagogies, a Model Program or Simulation (MPS) will 
serve as the central component around which each unit is orga-
nized, like the role of a unit dialogue in a foreign language course. 
Much has been written over the past decade about contextual-
izing programming instruction. Indeed, this author has written 
and published a detailed 50-page outline for a ten-unit cross-cur-
ricular introductory programming course, approved in 2013 as 
a University of California Office of the President (UCOP) “g” 
math elective, and called Computer Programming as if the Rest 
of the World Existed (CPRWE) [28]. Eight of its units is centered 
around a small to mid-size graphics-based MPS contextualized 
within one of a diverse range of subjects, including Dynamic Art, 
Geography, Political Science, Astronomy, and Molecular Mod-
eling.19

The challenges for a curriculum writer in drafting the MPSs 
for each unit are to ensure: (a) that the code for the MPS re-
flects the particular language patterns one wants the unit to 
focus on,20 so that students can see the practical utility of what 
they are learning; (b) that the MPSs are generally sequenced 
in order of increasing programming complexity; (c) that new 
programming concepts/skills are introduced while reinforcing 
ones previously learned; (d) that each MPS is highly engaging, 
both visually and intellectually; and (e) that the MPSs are con-
textualized within academic fields that students already value, 
and utilize basic concepts the students have previously encoun-
tered and already understand.

How is the MPS used? Consider how the foreign language 
teacher initially introduces the unit dialogue to students, sets 
up a structure for students to practice speaking and listening 
skills using as raw material the verbal interactions between the 
dialogue’s characters, and often asks students to memorize the 
dialogues. In a parallel manner, the programming language in-
structor, using whole class instruction, initially guides students 
to individually construct an MPS, a process which can take days 
or weeks depending upon the size of the program. At various 
intervals, the instructor will require students to memorize the 
program (if short), or some newly-taught portion of it. The ra-
tionale is two-fold—to facilitate syntax acquisition; and to inti-
mately familiarize students with the structure and vocabulary 
of the program, so that they can focus on the usage and mean-
ing of the program’s statements and methods in subsequent 
instruction.

There is no exact counterpart, however, to the foreign lan-

21 �For example, students may need to modify the parameters of a for-loop by changing 
the initialization value of a counter variable, its increment/update amount, and/or the 
termination condition.

19 �Demos of many of these simulations can be viewed at www.downtownmagnets.org 
on the Computer Science program page.  A 2nd-year course, Generative Design/Art, 
was approved (2017) by UCOP as an integrated “f” art elective

20 �As will be discussed, the choice of syntax features may not be completely 
independent from the MPSs used for the curriculum’s content.
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be the correct application of that single pattern to several novel 
word problems. The comprehensive assessment for the unit will 
host problems reflecting the full range of patterns studied. Stu-
dents will evaluate each problem, decide which among the many 
patterns is applicable, and craft an optimal solution.

Note that the prevailing instructional model expects stu-
dents to apply general concepts from lecture or the textbook to 
solve a full variety of novel problems at a unit’s end—problems 
whose solutions have not been explicitly demonstrated during 
instruction. Consequently, students are somehow expected to 
devise the pattern for each problem’s optimal solution de novo. 
The alternative SLA-based instructional model proposes teach-
ing paradigmatic solutions to each kind of problem students are 
expected to solve. With a variety of paradigms to choose from, 
the key skill students are expected to develop is choosing the 
paradigm that is applicable to the problem at hand—and then, 
of course, using it to write an optimal solution. This is compa-
rable to the organization of units in a foreign language curricu-
lum, each dealing with the vocabulary and conversations typi-
cal of specific societal domains, e.g., sports, restaurants, travel, 
and so on. This is not merely a difference in teaching philoso-
phy, but one grounded in educational psychology as well. Any 

curriculum is to provide students the vocabulary, grammar, and 
verbal exchanges for navigating a social situation that they typ-
ify and model. In like manner, the patterns in an MPS are ones 
that students would employ to solve similar real-life problems 
that they might encounter.

A series of exercises for the Circular Queue pattern in Table 
9D would include the sub-patterns shown in Tables 10A-10D. 
Note that the sample exercises employ scaffolding—the se-
quence begins with the simplest case and progressively intro-
duces the more complex cases that the method for the general 
case (Table 10D) will need to handle. It also employs a pedago-
gy used much in the Algebra 1 classroom—moving from the 
concrete to the abstract. Note that each sub-pattern should it-
self provide several exercises (a minimum of 5) to give students 
sufficient practice.

An SLA-based instructional model dictates that all of the pat-
terns that students are expected to learn need to be taught, i.e., 
students should not be expected to solve problems whose pat-
terns they have not explicitly practiced, and they should not be 
expected to magically extend logic—for the simple reason that 
they are not yet experienced programmers. The assessment fol-
lowing each pattern’s (or sub-pattern’s) battery of exercises will 
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decades of characterization of the novice programmer failure 
phenomenon have not produced any improvements in learning, 
nor pinpointed any credible cause. Predictably then, attempts at 
curricular innovation, rooted in hunches and overwhelmingly 
on the content side, have been ineffectual.

In contrast, the 2014 fMRI cognitive study of programmers 
established that the brain makes sense of computer programs 
in the regions of the brain long known to be associated with 
language processing functions, not logic and not math. Al-
though more research will be required to prove the case de-
finitively, this physiological evidence puts a spotlight on an 
aspect of programming instruction long taken for granted, 
the Prescriptive Linguistics language model. Both the fMRI 
study and the consistent anecdotal observations reported here 
about the positive effects of memorization strategies on syn-
tax acquisition constitute a compelling argument for investi-
gating whether an alternate and frankly more promising ap-
proach—implicit language pedagogies informed by both SLA 
theory and foreign language instructional principles—can en-
hance our instructional outcomes if scaled. On the flip side, 
those wanting to devise new content or pedagogic approaches 
to the introductory programming curriculum, but who ignore 
the central cognitive role of language in programming, now 
risk irrelevance. As Corder cautioned some fifty years ago, our 
teaching will only succeed when it conforms to how the brains 
of our students actually learn.  
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credentialed teacher knows that the ability to solve problems 
is—and algorithms themselves are—highly domain-specific; 
and that good problem-solvers draw upon prior experience and 
knowledge of specific domains [4,34]. Even so, problem-solving 
is a process that is still poorly understood.22

Finally, note that the approach described in this section will 
of necessity require that instructors allocate considerably more 
time to students practicing a unit’s concepts and sub-concepts 
than the current instructional model provides. The instruc-
tional tension between breadth (coverage) and depth (detail) 
is nothing new. Introductory programming language cours-
es have traditionally opted for breadth given the very limited 
amount of time they have allotted—or more precisely, that they 
have self-imposed upon their programs of study. Such a limited 
time frame could never work in a foreign language curriculum, 
where four semesters are typically allocated for students to ac-
quire proficiency in the fundamental workings of a language. 
Foreign language curricula probe every topic in depth, because 
the breadth of the curriculum can be adequately covered over 
the two years budgeted for the program’s foundational se-
quence of courses. Unfortunately, there is no way to reconcile 
the existing programming language model and course structure 
with both breadth and depth learning. Something will have to 
give, and the only resource available is time.

SUMMARY
In his seminal paper on the errors made by second language 
learners, S.P. Corder asserted that errors provided evidence 
of—and insights into—the process by which learners construct 
and refine hypotheses about the underlying grammar of the 
language data they hear. He wrote.

We have been reminded recently of Von Humboldt’s 
statement that we cannot really teach language, we can 
only create conditions in which it will develop sponta-
neously in the mind in its own way. We shall never im-
prove our ability to create such favourable conditions un-
til we learn more about the way a learner learns and what 
his built-in syllabus is. [9]

Yet, it is exactly the way novice programmers learn that has 
continued to remain a mystery, obscuring how improvements 
to teaching might be achieved.

No one denies that the current introductory programming 
pedagogic model leads to less than favorable learning out-
comes—particularly at the secondary level. The model un-
doubtedly contributes to ongoing low secondary enrollments 
and the worst demographic inequities of any subject area. Four 

22 �From a psychological vantage point, problem-solving is a complex phenomenon, 
described by Gestalt theorists with notions like “restructuring,” “insight,” and 
“entrenchment;” and by cognitivism with a reliance on domain knowledge and heuristics.  
In all of these, although conditions that facilitate the crucial moments of insight can be 
listed, there are no satisfactory explanations for how such insights arise.  The incubation 
phenomenon—setting aside a problem after being unable to find a solution, with a 
solution later popping into one’s mind (like a forgotten detail that one remembers after 
the fact)—argues that problem-solving may be a largely subconscious process.
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A personal walk down the  
computer industry road.

BY AN EYE-WITNESS.
Smarter Than Their Machines: Oral Histories 
of the Pioneers of Interactive Computing is 
based on oral histories archived at the Charles 
Babbage Institute, University of Minnesota. 
These oral histories contain important messages 
for our leaders of today, at all levels, including 
that government, industry, and academia can 
accomplish great things when working together in 
an effective way.


