
34  acm Inroads  2018 June • Vol. 9 • No. 2

CONTRIBUTED ARTICLESARTICLES

By Scott R. Portnoff, Downtown Magnets High School, Los Angeles, CA

The Introductory
Computer
Programming Course
is First and Foremost
a LANGUAGE Course

An fMRI (functional Magnetic Resonance Imaging) study
published in 2014 established that comprehension of

computer programs occurs in the same regions of the brain
that process natural languages—not logic, not math. The
unexpectedness of this result was primed in part by the
widespread belief that the language aspects of learning
how to program are trivial when compared to learning to
use programming languages for engineering tasks. In fact,
though, the fMRI data is compelling cognitive evidence for
the argument that the reason students have been failing
introductory programming courses in large numbers—for
decades—is because CS educators have underestimated
the importance of teaching programming languages as
languages per se. Despite the availability of this non-
invasive technology for well over two decades, educators
have neither researched the cognitive complexities of
how programming languages might be acquired, nor
tried to seriously understand this process in any degree
of depth. Consequently, they have failed to consider
what this evidence now implies: (a) that programming
languages, despite being artificial languages, are alive in
the brains of programmers in much the same way as any
natural language that those programmers speak; and (b)
that this new information about the cognitive aspects
of programming languages has profound pedagogic
implications.

The title of this article—The Introductory Computer Program-
ming Course is First and Foremost a LANGUAGE Course—may
seem provocative, but the truth is that language instruction is al-
ready a component of the introductory programming course.
The problem, however, has been the specific pedagogic approach
for teaching the language aspects of the course—a barebones and
long-abandoned teaching paradigm for natural languages mod-
eled after a Prescriptive Linguistics1 approach (explicit rule-based
grammar instruction), rather than one that incorporates principles
of Second Language Acquisition (SLA)2 Theory (implicit repetitive
exposure to language data in meaningful contexts). In the 21st cen-
tury, there are virtually no natural language classrooms that utilize
the Prescriptive Linguistics approach—including those that teach
Esperanto and Latin—yet this continues to be the universal instruc-
tional model for programming language instruction. Such a mod-
el could only make sense if applying syntactic rules was in fact an
effective way to learn the grammars of programming languages, a
belief that has never been corroborated. Indeed, studies in the lit-
erature going back decades overwhelmingly point to the opposite,
documenting droves of novice programming students unable to
stop making even the most basic of syntax errors [17].

1 �A Prescriptive grammar is a set of explicit rules for using a language, in most cases
taught to enforce uniform usage.

2 �Second Language Acquisition is the study of how people learn a second language, i.e.,
how they acquire the capacity to verbally comprehend and communicate fluently in a
second language.

acm Inroads • inroads.acm.org  35

ARTICLES

cilitates the acquisition of the basic syntactic features necessary
to avoid compiler errors—an early and stubbornly persistent
obstacle for many programming students [17], particularly
those in high school. Acquisition of the much larger semantics
piece—which can be assessed by the competent and efficient
application of basic programming concepts—can also be facil-
itated by the addition of implicit repetitive strategies, but the
process is lengthier and gradual, with a timeline mirroring that
of natural languages.

Although three pedagogic strategies informed by SLA prin-
ciples and described and published previously are referenced,
this article focuses on how one might go about teaching an ar-
bitrary language feature within a teaching paradigm that adapts
principles of a whole-language communicative approach, us-
ing conditional execution as an example. The article concludes
with a description of a secondary curricular model whose unit/
chapter content structure is informed by principles and objec-
tives that underlie second language instructional strategies—
adapting, but not using, the instructional strategies themselves,
owing to the fundamental and substantial differences between
natural and programming languages.

On a personal note, over the ten or so years of teaching
my introductory (pre-APCS-A) programming course, I have
employed a variety of curricula and tools: Scratch, Alice,
cross-curricular problem-solving, Codingbat, Exploring Com-
puter Science, PLTW CSE (CS Principles) and so on. I would be
hard-pressed to say that I had much success in reaching most
of my students, let alone the traditional demographic of “high-
fliers.” Despite the innovative and engaging nature of many of
these curricula (specifically, the first four), what they all reca-
pitulated was the default explicit language model. Over the last
several years, though, it has become progressively evident that
implicit language strategies are pivotal, allowing many more of
my students access to the curriculum, including clearer concep-
tual learning for the higher achieving ones as well.

This is not to claim that the explicit language model is patent-
ly ineffective—obviously there are talented students who man-
age to become successful programmers (and instructors); how-
ever, I believe they manage to do so despite this type of language
instruction. My experience has been that an implicit language
teaching model simply reaches more learners. Both the fMRI
study and the anecdotal observations of the positive effects of
implicit SLA-based instructional strategies reported here are
evidence arguing for an alternative instructional model that
could potentially have far-reaching outcomes for programming
curricula and instruction, particularly at the secondary level.

PART I:
FMRI EVIDENCE FOR THE CENTRAL
COGNITIVE ROLE OF LANGUAGE IN
PROGRAMMING
A research study with mammoth implications for Computer
Programming education, published in 2014, was by and large
ignored by the Computer Science education community. Not

Originally borrowed from foreign language pedagogies used
prior to the 1960s, the Prescriptive Linguistics model became
the default, unquestioned, and sole methodology used in class-
es from the earliest days of programming education, even as
foreign language instruction itself shifted to other much more
effective implicit methods. The fallout from this history has
left our students with a conceptual pedagogic gap to bridge
on their own, with instructors nevertheless expecting them to
magically solve problems using logic mediated by a language in
which most struggle to express basic fluency. Even those talent-
ed enough to somehow manage to get their programs to run
and function properly still compose awkwardly structured pro-
grams well into their first year.3

It might seem counterintuitive that the small syntactic foot-
prints of programming languages, with their relatively simple and
compact grammars, would translate into a lengthy and involved
learning process. The specific difficulties in learning a program-
ming language, though, simply differ from those of learning a
natural second language. The complications stem in large part
from the very small number of control structures that program-
ming languages employ—although infinitely adaptable, they are
at the same time semantically broad, diffuse, and ambiguous.

The pedagogic model I have been developing in my high
school classroom over the last few years has attempted to
remedy this situation by utilizing implicit strategies for pro-
gramming language instruction. A key observation that has
consistently come out of these efforts is the effectiveness of
memorization, an implicit language learning strategy. Specifi-
cally, memorization of short programs seemingly overnight fa-

Even those talented enough to
somehow manage to get

their programs to run and function
properly still compose awkwardly

structured programs well into
their first year. … Ironically, CS

educators are the last holdouts of a
language learning strategy

for our students that we no longer
even employ for the machines at the

center of our discipline.

3 �Even computer scientists working on language-related problems (most notably
Google Translate) have traded explicit rule-based approaches for implicit data/
machine learning algorithms because of the former’s inferior outcomes [19]. Ironically,
CS educators are the last holdouts of a language learning strategy for our students
that we no longer even employ for the machines at the center of our discipline.

36  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

(ventral lateral prefrontal cortex). At least for the simple
code snippets presented, programmers could use existing
language regions of the brain to understand code without
requiring more complex mental models to be construct-
ed and manipulated.

Interestingly, even though there was code that involved
mathematical operations, conditionals, and loop itera-
tion, for these particular tasks, programming had less in
common with mathematics and more in common with
language. Mathematical calculations typically take place
in the intraparietal sulcus, mathematical reasoning in the
right frontal pole, and logical reasoning in the left frontal
pole. These areas were not strongly activated in compre-
hending source code. [27]

What is initially remarkable about these findings is that the
brain appears to process both programming languages and nat-
ural languages in a similar manner, despite their significant dif-
ferences. Per the Chomskyan-Schützenberger hierarchy of for-
mal grammars, programming languages are generally classified
as Type-2 grammars, which generate what are known as con-
text-free languages. Natural human languages—termed regular
languages in this hierarchy—are classified as Type-3 grammars,
a subset of Type-2 grammars. This overlap may be the reason

dismissed, but ignored, as if it were so peripheral to the think-
ing of CS educators that they could conceive of no place within
their conceptual framework from where they might even begin
a discussion about it. “Understanding Understanding Source
Code with Functional Magnetic Resonance Imaging” reported
the results of a study led by Prof. Janet Siegmund of the Uni-
versity of Passau (Germany), in collaboration with researchers
at Carnegie-Mellon University (CMU), Georgia Institute of
Technology (Georgia Tech) and three research institutions in
Magdeburg (Germany) [30]. It describes a meticulously craft-
ed and executed series of experiments using fMRI4 to measure
the brain activity of undergraduate programming students as
they tried to understand5 what small Java programs did. The
researchers found strong activations in brain regions that are
specifically involved in language processing tasks—Brodmann
Areas 6, 21, 40, 44 and 47 (Table 1).

At the same time, brain regions associated with processing
math and logic tasks were minimally activated, as Georgia Tech
Prof. Chris Parnin, the study’s fourth author, summarized.

The team found a clear, distinct activation pattern of five
brain regions, which are related to language processing,
working memory, and attention. The programmers in
the study recruited parts of the brain typically associated
with language processing and verbal oriented processing

4 �fMRI (Functional Magnetic Resonance Imaging) is a noninvasive technique that measures precise differences in blood-oxygen levels in the brain—the BOLD (Blood Oxygen Level
Dependent) contrast effect. The BOLD effect results from the shifting magnetic properties of the iron atoms present in hemoglobin, depending upon whether the molecule is
binding oxygen or not. Neuronal activation is accompanied by an increase in both blood flow and arterial oxygenated (non-magnetic) hemoglobin to the affected brain regions,
displacing venous blood containing deoxygenated (highly magnetic) hemoglobin. The non-magnetic oxygenated blood interferes less with the magnetic resonance signal; hence a
measurable difference can be detected. There is a lag of 1 to 2 seconds after the triggering event, with the effect peaking at 5 seconds and dissipating at 12 seconds. When neurons
continue to be activated due to an ongoing stimulus, the peak broadens to a plateau. After dissipation, the BOLD signal falls below pre-activation levels (the undershoot effect),
but eventually rises back to pre-activation levels.

Experimental protocols need to consider various complicating factors. To accurately associate brain regions with cognitive activity requires longer tasks (1-2 minutes) to generate
plateaus. Tasks need to be repeated and measurements averaged out to ensure that a threshold statistical confidence level is attained. Activation artifacts from motion must
also be minimized, e.g., the head must be kept still, and subjects must refrain from moving their jaws. A critical piece is designing control tasks that filter out baseline cognitive
processes—such as visual processing activations in the study cited above—that have minimal, and ideally no, overlap into the cognitive process(es) of interest.

5 �The researchers distinguished between (a) top-down comprehension, where readers are familiar with a program’s domain and can pull in knowledge about that domain, and
(b) bottom-up comprehension, where programmers encounter a program cold for the first time and must rely on decoding the program line-by-line. The focus of the study
was on the latter.

acm Inroads • inroads.acm.org  37

ARTICLES

Support for the assertion that programming language fea-
tures are not just language-like, but actual language came from a
recent fMRI study which found that even operations appearing
to resemble those of language will not activate language-pro-
cessing regions. This study sought to answer the question
“whether natural language provides combinatorial operations
that are essential to diverse domains of thought.”

We addressed this issue by examining the role of linguis-
tic mechanisms in forging the hierarchical structures of
algebra. In a 3-T functional MRI experiment, we showed
that processing of the syntax-like operations of algebra
does not rely on the neural mechanisms of natural lan-
guage. Our findings indicate that processing the syntax
of language elicits the known substrate of linguistic com-
petence, whereas algebraic operations recruit bilateral
parietal brain regions previously implicated in the rep-
resentation of magnitude. This double dissociation argues
against the view that language provides the structure of
thought across all cognitive domains. [23]

The second methodology used by the Siegmund study that
buttresses its reliability is related to a major statistical error af-
fecting the validity of fMRI data analysis reported by Eklund
et al. two years later [12]. The error resulted from a fallacy in
the correction for multiple comparisons in the fMRI process.
Studies that had used any of three common software packages
for fMRI analysis yielded false-positive rates up to 70%, raising
concerns about the reliability of the over 40,000 already pub-
lished fMRI studies. The Siegmund researchers were unaffected
by this error for two reasons: (a) they had used analysis software
that avoided these problems; and (b) they performed a further
statistical correction to guard against any false discovery rate.
Details can be found in the Data Preparation and Analysis Pro-
cedure sections of their paper [30].

Regarding implications, the results of the Siegmund study
have a direct bearing on what is known as the novice pro-
grammer failure problem. For four decades, the literature has
documented large numbers of novice programmers failing
post-secondary introductory programming courses [3,18,33],
so much so that the problem has been called “one of the seven
grand challenges of computing education.” [22] Indeed, it might
be said that the phenomenon is not so much a problem as a
feature of these courses. It is no exaggeration to say that the
situation is many times worse at the secondary level, where the
majority of students steer clear of such classes—2017 enroll-
ments in the AP Computer Science A course were not even
one-fifth the numbers of those who took AP Calculus [7], it-
self an elite course enrolling less than 10% of all high school
seniors. Virtually all instructors of introductory programming
courses have firsthand experience with this “grand challenge,”
finding themselves both unable to explain how the “high-fli-
ers” in their classes seem to understand programming from the
get-go, while simultaneously at a loss to provide effective help
for those who seem to struggle perpetually. CS educators have

for the brain recognizing the programming language features
evaluated in the Siegmund study, including loop iteration, as
language. Because the programs studied were no longer than 20
lines, not all programming language features were tested (e.g.,
method calls and recursion), and it may be the case that certain
programming language features will require other mental mod-
els besides language. Nevertheless, it appears safe to assume
that the basic components of programming language grammars
are processed cognitively as language.

Long before fMRI was routinely used to map cognitive tasks
to specific brain regions, the major language processing regions
of the brain (including the ones implicated in the Siegmund
study) had already been mapped—identified anatomically in
postmortem patients with aphasia disorders—injuries to the
brain that affect expressive/productive and/or receptive/com-
prehension-related aspects of language processing. The confir-
mation and additional detail of these mapped language func-
tions provided later by advances in brain surgery (1950s) and
fMRI technology (1990s) make these among the most reliably
known areas of the brain.

Two methodologies used in the Siegmund study vouch for
the validity of its results. First, the selection of the control task
used to reduce background activations—in this study, asking
subjects to identify syntax errors in virtually identical pro-
grams—was tested in pilot experiments along with other can-
didate tasks, and found to be a good compromise between its
resemblance to, and dissimilarity from, the experimental task
of trying to understand—make sense of—the program. If ac-
tivations of language regions occurred due to incidental or pe-
destrian aspects of the task, these would factor out when acti-
vations from the control task were subtracted. In the words of
the research team:

The most difficult issue in fMRI studies and most other
studies that evaluate cognitive processes is to select suit-
able material and tasks (that is, source code in our case)
and devise control tasks that control for brain activation
elicited by processes that are needed for programming,
but are not specific for it, such as reading itself. It is im-
perative that source code and tasks without a doubt lead
participants to use the cognitive process that is the target
of the evaluation, because otherwise, we cannot be sure
what we measure (i.e., ensure construct validity). [30]

In a subtraction protocol, the control task acts like a mask
to filter out activations not specific for the cognitive task one
wants to isolate. Interestingly, other fMRI protocols have been
constructed for answering questions beyond the sole mapping
of cognitive tasks. In one case, to investigate the subtler distinc-
tion of whether syntax is “autonomous” from other features of
grammar, Moro devised a protocol that could distinguish be-
tween syntactic errors and errors unrelated to syntax. He found
that specific nets/networks of interacting regions—not mutu-
ally exclusively regions themselves (“pure locationism”)—were
associated with the different kinds of errors [25].

38  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

sults show that there are clearly similarities in brain acti-
vations that show that the hypothesis is plausible. [1]

Kästner was, of course, both cautious and modest in his
claims. CS educators, however, currently operate with no evi-
dence-based cognitive model for how students learn to program.
When partial models have been invoked, they have generally
presupposed the involvement of psychological constructs—
such as that “cognitive loads” are lowered with drag-and-drop
programming interfaces like Scratch or Alice—without having
done research (i.e., taking experimental measurements) to cor-
roborate such assumptions. Likewise, it has been assumed—
but never demonstrated—that programming concepts and
skills learned using tools like Scratch or Alice transfer to text-
based languages.6

Given the results of the Siegmund study, however, a cogni-
tive model for how students learn to program can now be built
on how the language regions of the brain acquire programming
languages. For instructors, knowing that fluent programmers
process programming languages like natural languages, peda-
gogies can be crafted to attempt to facilitate this physiologi-
cal outcome. A natural starting point would be an exploration
of both Second Language Acquisition theory and the implicit
instructional strategies currently used by foreign language in-
structors. A note of caution—although second language edu-
cators have decades of experience and knowledge about how
their students learn and the obstacles they encounter, there are
major differences between natural languages and programming
languages that make instructional strategies used in the foreign
language classroom impossible to use (these differences are dis-
cussed below). That said, many of these strategies can be adapt-
ed; that is, there is no reason why the cognitive language goals
and principles underlying those strategies cannot inform intro-
ductory programming language instruction in valuable ways.

In addition, fMRI technologies may theoretically provide
a way to cognitively measure whether new (and old) instruc-
tional strategies facilitate the acquisition of programming lan-
guage proficiency. Several recent studies support a model for
learning second languages in which brain organization chang-
es/evolves over time. Moderately proficient language learners
at first recruit anomalous regions of the brain not ordinarily
used to routinely process language. In contrast, highly pro-
ficient second language learners utilize the same regions for
both native languages and second languages [8,15,35]. A very
recent study that investigated the distinct neuronal activations
differentiating code review, prose review, and code compre-
hension tasks also found a similar pattern—that the brains of
participants with greater programming expertise treated pro-
gramming languages more like natural languages [13]. Should
further research confirm such patterns for programming lan-
guage learners, we should be able to not just demonstrate that

long blamed student failure on a lack of talent or work-ethic,
despite the decades-long inability of researchers to pinpoint the
involvement of such traits, or the inconsistent and inconvenient
fact that their failing students may excel in other subjects. Only
rarely have instructors considered the possibility that the fault
may lie with their own instruction.

Siegmund’s team, however, recognized the pertinence of
their findings to this long-standing problem.

…our research will have a broad impact on education, so
that training beginning programmers can be improved
considerably. Despite intensive research (e.g., Technical
Symposium on Computer Science Education, Innova-
tion and Technology in Computer Science Education),
it is still rather unclear how and why students struggle
with learning programming. With a detailed understand-
ing of the cognitive processes that underlie a developers’
every-day task, we might find the right recipe to teach
any student to become an excellent software developer
(e.g., by including training language skills, since our study
showed a close relationship to language processing). [31]

PART II:
IMPLICIT LANGUAGE LEARNING STRATEGIES

Beginning in 2013, I began to alter instruction in my intro-
ductory (pre-APCS-A) programming course by requiring my
inner-city high school freshman to memorize short programs
and program fragments. What I observed is that they stopped
making syntax errors seemingly overnight. This also resulted in
an upswing in overall motivation in all students, but particu-
larly in the ones who typically would have failed to learn much
of anything at all. This phenomenon is anecdotal, but dramatic
and unmistakable, and has been consistent year after year. This
instructional strategy can be understood within a theoretical
context of implicit language acquisition (discussed below).

I therefore offer the conjecture that the cause of the per-
sistent novice programmer problem is not some mysterious
defect in our students, but rather a gaping defect in the ped-
agogic model, one that has discounted the importance of lan-
guage acquisition issues. No one would expect algebra students
who lacked foundational mathematics skills to be able to solve
simultaneous equations. It is equally as ludicrous to expect stu-
dents who have trouble acquiring basic literacy in a program-
ming language to be able to compose programs whose logic is
mediated by that same language. The corollary is that a pedago-
gy that can devise effective language acquisition strategies while
accounting for the peculiarities of an artificial language should
allow the clear majority of students the possibility of becoming
proficient programmers.

CMU Professor Christian Kästner, the Siegmund study’s
second author, stated in an interview:

There is no clear evidence that learning a programming
language is like learning a foreign language, but our re-

6 �“It [computing] won’t make you better at something unless that something is
explicitly taught, said Mark Guzdial, a professor in the School of Interactive Computing
at Georgia Tech who studies computing in education. ‘You can’t prove a negative,’ he
said, but in decades of research no one has found that skills automatically transfer.” [26]

acm Inroads • inroads.acm.org  39

ARTICLES

spread agreement among SLA theorists that second languages
are learned implicitly as well, the age of the learner notwith-
standing.7 The role of explicit grammar instruction in foreign
language instruction is supplemental: (a) as reinforcement for
implicit learning; (b) to help second language learners correct
language features that were imperfectly learned; and (c) as an
aid to improve literacy. Exclusively explicit foreign language
teaching models, indistinguishable from those CS educators
currently use, were abandoned over three decades ago, with
implicit communicative and immersive learning taking their
place. A considerable amount of evidence has also accumulated
showing that implicit language instruction results in conscious
linguistic knowledge in addition to automaticity [14].

Human language is an innate, highly specific cognitive abil-
ity quite distinct from general intelligence. Evidence support-
ing this view includes (as already mentioned) brain localization
of language processing; pathologies and genetic disorders that
specifically target language without affecting general intelli-
gence; and the opposite—severe retardation that leaves linguis-
tic abilities intact; and an optimal age-related developmental
window after which language learning becomes more effortful
and difficult. As such, languages are said to be acquired, not
learned [16].

The difficulty with trying to adapt communicative instruc-
tional approaches for programming languages is that, because
they exist solely in written form—i.e., they are unspoken—there
are no communities of speakers to interact with. As such, mech-
anisms comparable to those for acquiring natural languages sim-
ply do not exist. How then do those students who become profi-
cient programmers manage to acquire programming languages,

novice programmers increasingly utilize brain regions classi-
cally associated with language as they become more proficient,
but also be able to use that model to assess the effectiveness of
instructional strategies.

A cognitive model that emphasizes language acquisition
would thus have great explanatory potential, allowing research-
ers to make and test predictions. Such a model does, howev-
er, come with several significant challenges. The least difficult
of these are scheduling changes, specifically lengthening the
amount of time allotted to students to become proficient in the
use of a programming language. The reason is simple enough—
it is unrealistic to expect significant competence in any lan-
guage after a single college semester or year-long high school
course. An obvious corollary would be to teach one language
and one language only until proficiency is acquired (2-3 years
in high school, 1-2 years in college). The not uncommon prac-
tice of switching programming languages every semester makes
about as much sense as a program of instruction that mandates
one semester of French, followed by a semester of German,
then a semester of Russian. Indeed, the designer of such a cur-
riculum would be sacked for the obvious—that it is impossible
for students to acquire even bare competence in any of these
languages in such a short period. The fact is, subsequent lan-
guages are easier to learn having first gone through the process
of comprehensively learning a single second language. The case
is even stronger for programming languages— because they
all implement the same set of control and data mechanisms in
very similar ways, the task of learning a second programming
language for those with in-depth knowledge of a first program-
ming language is more like learning a dialect than an entirely
new language.

A much more challenging matter is unearthing the kinds
of learning conditions and implicit instructional practices that
might facilitate the process by which programming languages
are better acquired. In fact, a working definition of such ped-
agogies would be those that facilitate programming languages
taking up physical residence in the language processing regions
of a novice programmer’s brain. In addition to this physiolog-
ical metric, such strategies should also facilitate performance
metrics like fluency/automaticity.

The current Prescriptive Linguistics model of programming
language instruction generally proceeds as follows: (a) the in-
structor explains the syntactic/grammatical rules associated
with data and control structures; (b) she works through ex-
amples that demonstrate language usage; and (c) she provides
students practice via problem-solving exercises. However, this
explicit instructional model is not one that has been found to
help most learners acquire and become proficient users of a
second language.

Learning one’s primary/native language—whether spoken
or signed—occurs implicitly (passively, subconsciously, auto-
matically) through repetitive exposure to language data and
meaningful interaction with other speakers. It does not occur
through the explicit (conscious, active, intentional) inculca-
tion of and practice in applying linguistic rules. There is wide-

7 �For second languages, “early word and grammar learning relies on declarative memory
(and more explicit processes), but that grammar later relies on procedural memory
(and more implicit processes).” [32]

An obvious corollary would be
to teach one language and one
language only until proficiency

is acquired ... The not uncommon
practice of switching programming
languages every semester makes
about as much sense as a program
of instruction that mandates one
semester of French, followed by

a semester of German, then a
semester of Russian.

40  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

about one year, currently more time than the CS introductory
instructional model provides. Implicit learning strategies have
for three decades been the most effective and efficient ways to
facilitate the acquisition of both receptive and expressive fluen-
cy and automaticity in second languages, and there is much that
programming instructors can learn and adapt from foreign lan-
guage teaching goals and principles. Indeed, models of instruc-
tion that fail to give sufficient import to the central cognitive
role that language plays for students of programming languages
should be considered intellectually suspect. Although a peda-
gogic model that adds early implicit language instruction would
be a partial shift in instructional paradigms, requiring a bit of
rethinking as to how we teach the subject, it is not particularly
complicated to implement. Such a model would, however, defy
CS educators to jettison long-held, but ultimately unfounded
assumptions about how their students may learn—and how
they themselves might have learned—to become proficient us-
ers of a programming language.

PART III:
CS INSTRUCTION AT THE SECONDARY LEVEL
Although adding implicit language instruction may increase and
widen access to the introductory postsecondary programming
curriculum, the greatest potential for progress lies at the sec-
ondary level, where, aside from elite school settings, CS educa-
tion has been an ongoing and futile cycle of implementing—and
then discarding—one ineffective curriculum after another. The
failure has been due to the near exclusive focus of innovation on
the content side of curriculum, with little thought given to how
methodologies can effectively deliver that content. While the po-
tential of a curriculum’s content to generate interest is vital, if
that content cannot be delivered in a way that will impart self-ef-
ficacy—a student’s confidence in her ability to compose novel
working programs on her own—no amount of interest will suf-
fice to convince her to continue study in the field.

Since Sputnik, secondary education has offered an increasing
number of college-level courses in math and science as a way to
jump-start study of those fields before college. In recent years,
and with goals similar in spirit to the social efficiency education
movement of the first half of the 20th century, the CISE Director-
ate in the National Science Foundation (NSF) has promoted the
idea that high school CS education is both a bridge to the study of
CS in college and a critical part of a pipeline for ultimately filling a
huge number of domestic computing job vacancies.

seemingly without great difficulty? However it occurs, an SLA-
based cognitive model would predict—because repetitive ex-
posure and meaningful interaction appear to be the sole route
by which natural languages are acquired—that these principles
must somehow operate in how these students learn as well.

One example that corroborates the effectiveness of implic-
it language instruction is the memorization teaching strategy
mentioned earlier. Note that in employing this strategy, the only
direction given students is that they memorize the material
perfectly—they are given no overt instruction for how to form
syntactically correct statements. Nevertheless, the result is that
students become able to compose programs without the kind of
syntax errors that lead to compiler errors, the earliest obstacle
reported for novice programmers [17]. The following is a possi-
ble mechanism. To memorize a program or program fragment
perfectly, students must employ numerous cycles of (a) reading
the material and (b) writing it out without looking. This process
bombards their brains repeatedly with idealized language data.
As with natural languages, the brain subconsciously generaliz-
es from the patterns in the data and implicitly constructs the
syntactic rules (the grammar) for the programming language
[28]. Those who would dispute this kind of implicit mechanism
would need to explain how memorization subsequently allows
students to (a) compose new programs with syntactically cor-
rect sequences of programming statements, as well as (b) iden-
tify syntax errors in novel programs.

It is important to note that it is not at all being claimed that
other pedagogies used in programming education should be
abandoned—although the literature for the past four decades
has not revealed any instructional strategies to have made a
dent in the novice programmer failure problem. Rather I hope
to encourage others to modify the programming language
course to initially use implicit pedagogies focusing on language
in order to lay a linguistic foundation on top of which tradition-
al pedagogies that focus on logic and problem-solving can sub-
sequently take root. I myself limit the use of most SLA-based
instructional strategies to the first year—the introductory (pre-
APCS-A) programming course. Students who continue in the
subsequent APCS-A course, although far from being fluent
programmers, have acquired enough of a comfort level with
Java that traditional strategies can be used—with the caveat
that my problem-solving philosophy is informed by an SLA-
based teaching framework, as described in Part V.

The Siegmund study unambiguously documented the first
neurocognitive evidence pertinent to CS programming educa-
tion. Although the results should have precipitated a frenzy of
ongoing discussion and inquiry, they were instead met with a
blip of interest that quickly dissipated. A few follow-up studies
by other researchers are only now beginning to trickle in, but
crucially, there has been no effect on CS education. CS educa-
tional pedagogy has from the start been modeled after mathe-
matics instruction, with a primary focus on problem-solving.
What has been ignored, however, is that learners must first ac-
quire basic proficiency in the programming language that medi-
ates the logic required for problem-solving, a process that takes

The Siegmund study
unambiguously documented

the first neurocognitive
evidence pertinent to

CS programming education.

acm Inroads • inroads.acm.org  41

ARTICLES

sight, CSTA’s five-strand framework, an abrupt break from the
young organization’s past positions, can be seen as an apologet-
ic—a rationale/justification for giving up on the goal of rigorous
programming instruction at the secondary level because of the
massive failure of educators to effectively teach programming
to the vast majority of high school students.9

As a replacement, CSTA has instead promoted two second-
ary survey courses, Exploring Computer Science (ECS) and
AP Computer Science Principles (AP CSP), whose contents
conform to CSTA’s new, but questionable, framework. From
the start, the rationale for both courses has been to “broaden
participation in Computer Science.” The two courses, however,
have been designed to merely expose students to their content
and stimulate interest, as opposed to delivering substantial and
measurable skills that will vertically prepare students for sub-
sequent programming study, the way an Algebra 1 course lays
a conceptual foundation that prepares students for the Algebra
2 course. This is a direct consequence of the nature of survey
courses, which place emphasis on coverage at the expense of
depth. However, it’s unclear that the contents of these courses
have much value, in practice resembling not so much a carefully
designed sequence of fundamental concepts (as they claim) as
a smorgasbord of unrelated topics that can be replaced in the
event they prove too difficult for students to learn. In contrast,
a survey course might better reflect the field through an over-
view of the most important contemporary developments in the
subfields of Computer Science—Artificial Intelligence, Robot-
ics, Machine Learning, Big Data—emphasizing in particular
their real-world applications. Such a course might also include
important engineering and cross-disciplinary applications, in
areas like DNA Sequencing and Analysis (Bioinformatics), Mo-
lecular Modeling, Routing, Astronomy, Linguistics, Journalism
and Art. Although in my view this would give students a more
realistic and engaging look at the field, it’s impossible to really
cover these topics in anything other than a very simplistic way if
students have no appreciable programming proficiency.10

There is also a substantial pedagogic problem with both ECS
and AP CSP, in that no level of excitement or interest will con-
vince students to continue study in any subject if they don’t also
have an authentic sense of self-efficacy, a confidence in their
ability to correctly apply concepts and skills studied to similar,
but novel, situations. Because the courses treat programming
as only one of many topics, they unfortunately do as little to
prepare students for a subsequent programming course as an
introductory course on French culture and literature in transla-
tion would for students following up with a second year French

The APCS-A course in fact fits these goals—longitudinal
studies completed by the College Board in the past decade have
confirmed the course’s effectiveness as a bridge to CS study in
college [21,24]. There have, however, been long-standing prob-
lems that continue to limit the course’s influence. APCS-A may
be the equivalent of a one-semester introductory college lev-
el class, but at the secondary level it plays out in practice as
a highly accelerated programming curriculum, even over the
course of an entire year. To complicate matters, the course has
no programmming prerequisite, attributable in part to the lack
of standardization of secondary programming curricula—aside
from the APCS-A course itself. Both factors have made it a
poor entry point for the vast majority of students, inequitably
skewing its demographics towards a subset of the most aca-
demically talented, and ensuring low overall enrollment num-
bers.8 Notwithstanding, it is, however, an appropriate second
year programming language course for those who have taken
and passed a rigorous introductory pre-AP programming class.

As such, the need has always been for an introductory pro-
gramming course that aligns vertically with APCS-A, and that
utilizes instructional strategies that can credibly prepare stu-
dents for that next course. Although this may seem unremark-
ably obvious, an alternate narrative that has emerged during
the past decade at the secondary level actively downplays the
importance of learning to program. Deemed as a corrective to
the “programming-centric” focus of the APCS-A course, the
Computer Science Teachers Association (CSTA) codified a
framework of five co-equal strands. This new scheme, however,
has its problems. Programming (subsumed in a strand called
Computer Practice and Programming) was unconvincingly
separated from Computational Thinking (algorithms, abstrac-
tion, and the like) [10], with the result that some secondary cur-
ricula (e.g., Exploring Computer Science) attempt to teach algo-
rithms, such as sorting, before students have learned anything
about data structures or programming, leading one to question
not only the superficial level of rigor of such instruction, but
the point of presenting such material at all when it is devoid of
meaningful contexts. Moreover, a strand called Collaboration
implausibly occupies a space just as important to the study of
CS as each of the other four strands. In a mathematics con-
text, this would be the equivalent of arguing that group work—a
teaching strategy—is a learning objective equally as vital as the
content of any major topic in the Algebra 1 curriculum.

This scheme was promoted despite the broad postsecond-
ary consensus that programming be the first topic of study in a
college CS curriculum because of its role as the core skill fun-
damental to the entire discipline, crucial for understanding and
plumbing topics—particularly algorithms—in virtually all sub-
sequent coursework on anything beyond a trivial level. In hind- 9 �For a fuller and more detailed critique of the CSTA framework, see Appendices B and

C of reference [28].
10 �In practical terms, what these courses do is eerily reminiscent of the mathematics track

system of previous decades in which college-bound students took a math sequence
culminating in calculus and pre-calculus, while students not bound for college took
a general mathematics sequence terminating with pre-algebra. In this parallel
incarnation for secondary CS instruction, one tier (APCS-A) teaches programming
while the other (AP CSP and ECS) doesn’t, with obvious implications for students’
college readiness should they undertake subsequent CS study. Ironically, these survey
courses simply recapitulate the very inequities they were intended to eliminate [28].

8 �Interestingly, it has been assumed that the demographic inequities are skewed only
against females and traditionally underrepresented minorities in favor of white and
Asian males. However, when one considers the very low enrollment numbers, a more
nuanced—and probably more accurate—view is that the white and Asian males in CS
courses are a subpopulation, and that the majority of white and Asian males similarly
fail to participate.

42  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

tral place of programming in the secondary CS curriculum. Note
that the confusion introduced by these courses could only take
root within a secondary teacher workforce whose subject-matter
competency is rarely higher than the coursework found in a first-
year CS college-level program—and most often not even that.
Even were consensus on the primacy of programming to be rees-
tablished, proven pedagogies for effective programming language
instruction—ones that can ensure that grade-level students can
make progress in acquiring programming skills and concepts—
remain non-existent. This pedagogic deficiency completes the vi-
cious circle, because whatever teaching techniques and strategies
CS credentialing programs might train prospective teachers in
would be purely speculative.

In my experience, implicit language instruction appears to
be a—if not the—crucial missing piece of programming lan-
guage pedagogy, and I hope to encourage researchers to inves-
tigate this approach. At the same time, should this prove to be
the “magic bullet,” I would remind instructors that acquiring
proficiency in the use of a second language is a lengthy and
gradual process. Utilizing such instruction should produce
noticeable and ongoing improvements, but it will not make
all students programming wizards overnight. What I witness
in my classes, though, is that implicit language instruction,
contrary to the traditional Prescriptive Linguistics model,
provides the scaffolding necessary for grade-level novice pro-
grammers—particularly those who are prone to struggle—to
progress and learn.

PART IV:
CHOOSING WHICH LANGUAGE FEATURES TO
TEACH
Because the syntactic footprints of programming languages are
small, it may seem that learning to use them should be uncom-
plicated and obvious. In my experience, though, only a pro-
gramming language’s basic syntactic features, the ones whose
errors obstruct compilation, are easily imparted—using the
memorization strategy discussed earlier. It takes a much longer
time to acquire the semantics of a programming language—the
knowledge that enables one to write efficient, concise, and clear
programs. Generally, such proficiency takes a minimum of two
years for the most talented students. The difficulties can be
attributed to a handful of characteristics peculiar to program-

language class, thereby postponing the many difficulties that
they will invariably encounter as novice programmers. The two
courses have certainly demonstrated that they can broaden par-
ticipation, but that participation comes at the cost of academic
rigor and preparedness, exchanging these for a watered-down
version of CS of questionable utility and relevance.11

An introductory pre-APCS-A programming course, the first
of a two-year programming sequence that culminates in an ad-
vanced version of APCS-A, has in fact been taught for years
at the highly selective magnet Thomas Jefferson High School
of Science and Technology (TJHSST), where freshmen with no
programming background take the Foundations of Computer
Science pre-APCS A programming course (“classes & objects,
loops, if, arrays, files, graphics”) and in their sophomore year
take APCS plus Data Structures. Note that although these
freshmen are highly gifted students conforming to the tradi-
tionally inequitable demographic, their instructors have made
the judgment that they still require the benefit of a pre-AP
programming course to maximize success in APCS-A. The
problem remains that, were such a pre-APCS-A programming
course to be implemented in less elite educational settings, in-
structors and students would—again—run up against the nov-
ice programmer failure problem because of inadequate peda-
gogic strategies.

There are also political and structural considerations. Al-
though a host of groups and organizations, such as ACM and
Code.org Advocacy Coalition, have argued that CS should be
included in the K–12 core curriculum, state boards of education
have not been convinced. Part of the problem stems from the
boards themselves, which have failed to create CS credentials,12
resulting in an absence of credentialing programs and a dearth of
9–12 subject-matter competent instructors (i.e., those possessing
a B.S. in the field or the equivalent, as has been the norm in coun-
tries such as Israel13). As such, most public schools still rely on in-
structors with minimal knowledge of the subject. There are also
curricular challenges. The content of secondary CS courses varies
enormously, a problem exacerbated by the new survey courses,
which have also fractured the long-held consensus about the cen-

11 �As survey courses that contain some very simplistic programming units, ECS and AP CSP
can only claim to give its participants a superficial exposure to programming concepts.
Although, to their credit, some versions of AP CSP (e.g., Beauty and Joy of Computing)
do focus almost exclusively on programming competence, these curricula make no
substantial inroads into solving the novice programmer failure problem, carrying on the
long secondary educational tradition of ineffective programming instruction.

12 �In 2016, California’s CTC (Commission on Teacher Credentialing) created a CS
supplemental authorization, but not a full CS credential that would have weight
comparable to, say, a Math or Science credential. The authorization requires separate
courses in five “content areas”: Computer Programming; Data Structures and
Algorithms; Digital Devices, Systems and Networks; Software Design; and Impacts
of Computing (which can be counted if covered in courses from the first four areas).
Although this is a significant improvement, it still falls far short of the range of topics
that an undergraduate would study for a CS major [5].

13 �The importance of setting the minimum content knowledge for a secondary CS
instructor to the equivalent of an undergraduate major in the field cannot be
emphasized enough. Those who simply know the basics of programming are missing
not only experience in designing mid-size to large software applications, but crucial
knowledge about the ways that CS can be applied to a host of problems in subfields
within CS proper, as well as in disciplines across the academic spectrum. Both impact
not only a teacher’s ability to make course content relevant to her students, but her
ability to imagine and design instructional material that can illustrate the vast cross-
curricular reach of CS.

In my experience, implicit language
instruction appears to be a—if

not the—crucial missing piece of
programming language pedagogy,

and I hope to encourage researchers
to investigate this approach.

acm Inroads • inroads.acm.org  43

ARTICLES

by which the values of arguments in a method call
are passed to the parameters of a method definition.
An intermediate or underlying form of the method
heading (not existing in the grammar) that shows the
explicit assignment of argument values to parameters
(analogous to transformations in the original Chomskyan
Transformational Grammar model) better explains this
mechanism, making it visible and concrete.14 Similarly, the
for-loop is an abbreviated notation for repeating (however
many times) the statements in its body. Explicitly writing
out these repetitions helps to elucidate how the three parts
of a for-loop operate when students first begin to work with
this abbreviated control structure.

3. �Ongoing exposure: optimally solving a paradigmatic
problem repeatedly to better cement it in memory as an
archetypal solution.

Many curricula will begin the topic of conditional execu-
tion by presenting three patterns of if/else statements that (a)
have varying degrees of mutual exclusivity and (b) a different
number of branches that can be theoretically executed. These
two properties are logically implicit in the syntactic structure of
each pattern (Tables 2A, 2B, 2C).15

Typically, a few examples and counterexamples to illustrate
these patterns may be given (Tables 3A, 3B, 3C). Note the logical
error in the counterexample of Table 3A—the implication is that
the error is structural, attributable to the cascading if-statements.
However, the error can be corrected by simply reversing the or-
der of the first four if statements (Table 4A). Interestingly, the
error will be reintroduced should one supplement this fix with
if-else statements (Table 4B). When the cascading if-statement
pattern is placed inside a method—an environmental change—
the Table 3A error can also be fixed if each branch returns the

ming languages. First, the control structures of programming
languages—primarily conditional execution and iteration—are
semantically broad and diffuse. One narrows meaning—i.e.,
performs tasks with specific accuracy—by arranging control
structures in specific sequences, and most often in combina-
tions with specific variables and/or data structures. Second,
structured programming languages employ user-defined meth-
ods (with and without parameters), which add a third dimen-
sion of hierarchy overlaying the main body of sequential state-
ments. Hierarchy such as this has no counterpart in natural
languages, which are strictly sequential. Third, programming
languages make use of nested syntactic blocks, a form of com-
plex recursion (in this case center-embedding) that is theoreti-
cally possible in natural languages, but which in practice is all
but impossible for people to process and understand. Fourth,
as previously mentioned, the semantics of natural languages
are acquired by interacting with native speakers. Programming
languages are unspoken—hence there are no communities of
“speakers” with which to interact. This last point is probably
the most significant obstacle for educators who would like to
adapt contemporary foreign language teaching techniques for
programming language instruction.

How, therefore, would one go about constructing effective
instructional strategies within the context of an implicit lan-
guage-teaching approach, and what would they look like? This
section will, as an example, discuss factors for deciding how
to modify the teaching of an early introductory programming
topic—conditional execution. For those interested in strat-
egies for teaching the semantics of other language features,
three that have been described previously [28] are listed here.
1. �Setting components in relief: focusing on specific features

and using them in different contexts or environments to
highlight distinctions in meaning. Although like Variation
Theory [20], the key difference is that learning in a
linguistic model is implicit. This strategy also includes the
use of counterexamples.

2. �Transformations: underlying or expanded intermediate
syntactic forms posited or invented to explain abbreviated
syntactic features of programming languages whose
mechanisms of operation are implied. For example,
students are often confused about the mechanism

14 �Consider a method definition Polygon getPolygon (int nSides) and its corresponding
method call getPolygon (6). One can posit an intermediate/underlying form linking
the two statements:
 Polygon getPolygon (int nSides = 6). To turn this into an exercise that students can
compile and run, the assignment statement within the parentheses of this invented
underlying method heading can be moved down (or demoted) to the method body,
appearing as the more familiar declaration of a local initialized variable. Note that this
strategy also clarifies how parameters behave like local variables [28].

15 �The examples in Tables 2 and 3 are taken from Chapter 4 of Building Java Programs
[29].

44  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

com website. A method containing a nested if-else within an
outer else statement (Table 6A) can be rewritten using an equiv-
alent non-nested (i.e., flat) three-part if—else-if—else structure
(Table 6B). These can be collapsed to a single if-statement, a
compound Boolean expression, and two return statements
(Table 6C). The most compact version uses a single return state-
ment and this same compound Boolean expression (Table 6D).

One can go on and on. The point is that the complexities
of if-else structures arise because their correct functioning is
dependent upon the interaction of logic, syntax and environ-
ment (e.g., inside a method). More specifically, program logic
is distributed among two layers—the syntax layer that governs
structural aspects of mutual exclusivity and flow of control, and
the content layer that uses Boolean expressions to mediate the
program’s specific logic. What should be clear to any instructor
who thinks about pedagogic issues is that this kind of discus-
sion cries out for simplification and scaffolding. The alternative
is to cause unnecessary confusion for students.

As it happens, all if-else statements—except for those that
modify the value of the determining condition variable itself16 —
can be rewritten as cascading if-statements. As an example, Ta-

letter grade (Table 4C); note that this is an alternate mechanism
for enforcing mutual exclusivity. The error, however, will not be
corrected in a method that maintains the grade variable, with a
single return statement at the method’s end (Table 4D).

Unfortunately, the fixes in Tables 4A and 4C are themselves
counterexamples, because from a maintenance perspective,
a design independent of statement order is preferable to one
where a change in the order will introduce logical errors. Note
that the examples in Tables 5A and 5B provide this exact fix—
they enforce mutual exclusivity through Boolean logic alone by
using non-overlapping conditions that cover all possible cases,
rendering the order of the if statements inconsequential. Pro-
grammed in this manner, it doesn’t matter which of the three
patterns from Table 2 is used—any mutual exclusivity contrib-
uted by the syntax layer will be redundant/superfluous.

Although the logical implications regarding the examples
in Tables 2–5 may appear obvious to experienced program-
mers, they are described here in detail so that one might better
appreciate how complex and daunting the possibilities might
appear to be students who must juggle this information when
encountering such ideas for the first time. Consequently, one
might begin to wonder what is gained by including if-else
statements in an initial discussion of conditional execution.

To exacerbate this conceptual overload, consider the com-
plexity were one to now add a discussion of nesting and com-
pound Boolean expressions comprised of independent condi-
tions. As an example, Tables 6A-6D show possible solutions to
the very first problem in the Warmup section of the codingbat.

16 �When toggling a boolean condition variable:

if (pass) { pass = false; }	 if (pass) { pass = false; }
else { pass = true; },	 if (!pass) { pass = true; }
the cascading-if “equivalent” would be :	 which always sets pass to true.

In such cases, one can opt for a toggle statement: pass = !pass. Note, however,
that such examples can demonstrate the structural necessity of if/else mutual
exclusivity, as well as switch statements for condition variables having more than two
values, when they are introduced later.

acm Inroads • inroads.acm.org  45

ARTICLES

46  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

acm Inroads • inroads.acm.org  47

ARTICLES

family relationships, shopping, sports, vacationing, and the like.
Each unit dialogue introduces pertinent vocabulary, phrases,
idioms and verbal exchanges typical for what one might expe-
rience outside the classroom, as well as the grammar structures
one might use, increasing in difficulty as the course progresses.
In the classroom proper, there is an abundance of talking and
listening, based on the verbal exchanges modeled in the unit
dialogue. A host of exercises provide for extensive practice of
the material in all four communicative areas—listening, speak-
ing, reading, and writing. Later units may contain two or three
related model dialogues, each with its own practice exercises.
Each unit concludes with assessments that measure how well
the material has been learned in the four communicative areas.

One much used exercise in a foreign language curriculum is
the substitution drill. To practice listening and speaking skills, the
instructor might pair off students and have them repeat ques-
tion-rejoinder patterns while substituting different vocabulary
items. The drill bolsters both vocabulary and syntactic patterns.

Q1: Do you prefer milk or orange juice?
A1: I prefer orange juice [milk].

Q2: Do you prefer bread or croissants?
A2: I prefer croissants [bread].	 etc.

This may be followed by open-ended questions, e.g.,

Construct a four-sentence dialogue between you
and a family member as you shop for groceries.

Substitution drills are also used to practice purely grammat-
ical features, e.g., noun-article agreement.

Nous pouvons acheter des oeufs.
Tu veux du jambon?
Avez-vous manger de la soupe?

The components in these units are crafted with two key
principles in mind—repetitive exposure in varying contexts and
meaningful communication. As mentioned in Part I, the learn-
er’s exposure to language features (data) that are used repeated-
ly, but in varied contexts, is the mechanism by which the brain
implicitly discerns patterns that it then inductively generalizes
into the syntax rules of an ever-evolving grammar. Meaningful
communication is what propels this language acquisition pro-
cess. That is, the learner’s motivation to actively communicate
is what both drives repeated attempts at communication un-
til her needs and wants have been successfully conveyed, thus
honing correct language usage; and keeps her in a state of active
listening and ongoing exposure to language data, spurring more
cycles of the language acquisition process. In a programming
language learning context, though, it makes no sense to say
one can “communicate” with a computer. On the other hand, a
computer does provide immediate program output—feedback
as to how well the program is written. This ongoing cycle of
intentional interaction on the part of the learner seems to be an
effective substitute for meaningful communication, allowing for

ble 7A shows a simple if-else statement, and Tables 7B and 7C
show its logical equivalents (though the flows of control differ).
Note that the patterns in Tables 7B and 7C require that vari-
ables be initialized (with a dummy value in 7B and the default
value in 7C) to avoid compiler error—a software engineering
practice worth encouraging anyway. An introduction to con-
ditional execution can thus focus on one syntactic form—cas-
cading if-statements. The concept of if-else can now become a
refinement that can be postponed to a more advanced treat-
ment of the subject, much like switch statements and ternary
expressions.

There are several pedagogic advantages to scaffolding the
topic in this way. An introductory treatment of the topic will fo-
cus on the most important aspect of conditional execution—the
use of Boolean logic to enforce mutual exclusivity. Second, con-
fusion due to the variety of ways that programming languages
can express the same decision-making logic will be lessened. Fi-
nally, students will only have to learn a single pattern, the form
in Table 7C,17 which can be used in all environments, including
those where methods return values.

Aside from scaffolding, there are cognitive reasons specific to
language learning that argue for this simplification as well. When
children are learning their first/native language, the order in which
syntax features are acquired is related to their stage of develop-
ment [6]. There is also a predictable order, related to difficulty, for
features acquired by children learning second languages [11], and,
it turns out, for adult second-language learners as well [2].18

In summary, this section has demonstrated that an introduction
of the topic using the simplified case of cascading if statements—
which still retains a substantial, but now much reduced, amount
of complexity—will provide students a basic, but usable, syntactic
foundation for conditional execution, which they can later supple-
ment with more nuanced features that the language provides.

PART V:
CURRICULAR STRUCTURE USING IMPLICIT
LANGUAGE TEACHING METHODS
Having found a way to simplify and scaffold instruction for con-
ditional execution, how would one structure such a unit using
an SLA-based teaching model?

A unit in a whole language curriculum taught using a com-
municative pedagogic approach opens with a brief dialogue con-
textualized in a specific social aspect of life, such as eating out,

17 �Although the code fragment in Table 7C is preferable, the stilted, but more explicit,
intermediate form in Table 7B, may have considerable explanatory value, particularly
in a side-by-side comparison to if-else-statements when they are eventually taught.
Those who would like their students to perform actions inside the if-blocks can
instead set parameter values in the blocks and follow with a single action statement
that uses those parameters.

18 �An interesting aside is that the authors of these last two studies concluded that the
results were evidence for a second language acquisition process involving “creative
construction,” not “habit formation.” Creative construction, a process involving
hypothesis testing about the target language, is what is generally agreed to account
for the primary mechanism underlying implicit acquisition of first/native languages.
Interestingly, evidence of hypothesis testing in the learning of programming languages
surfaced when I observed my students making certain novel syntax errors having to do
with the direction of assignment of values to variables [28].

48  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

guage classroom’s speaking and listening activities that reuse the
material from the unit dialogue. Instead, using guided discovery,
the instructor directs students to incrementally reconstruct the
entire MPS (or a small portion of one of the larger MPSs) from
scratch in a sequence different from how they were original-
ly guided to build it, specifying only how the partial program
will function at each juncture, but not which parts of the MPS
to use. The objective is that students will learn the function of
the MPS’s constituent working blocks and get a better sense of
how they fit together to achieve the program’s logic. At sever-
al points during the reconstruction, students are also asked to
modify the output of the MPS, forcing them to tinker with the
code and discover how key syntactic features work.21 Students
go through several cycles of this exercise, reconstructing the
same MPS, but each time in a different sequence and with dif-
ferent changes to the output. This strategy, setting components
in relief, is a specific implementation of the principle of repeti-
tive exposure in varied contexts.

Instruction next focuses on giving students repetitive prac-
tice with a specific language feature. An example that uses
transformational exercises asks students to convert indexed
for-loops (that process members of an array) into equivalent
statements that use hard-coded indices (Table 8).

Depending upon the unit, students might also construct in-
dividual variations of the MPS to let them explore their own
creativity (with ongoing feedback from the instructor)—such
exercises are extremely easy to implement when contextualized
within the field of dynamic art. At unit’s end, the instructor
formalizes the learning in a traditional way, whether through
direct instruction, Socratic seminar, or the like. Having been
steeped in the content of the unit for several weeks by this time,
students will be better primed to appreciate both basic and sub-
tle details of what they have studied. A formal unit assessment
of the knowledge and skills taught over the previous weeks will
tell the instructor how successful instruction has been and what
details might need to be retaught.

The counterpart to substitution drills for a programming
language unit would be a series of exercises designed to pro-
vide practice in using one specific language pattern. Four pat-
terns illustrating the use of conditional execution used in the
unit MPSs of the introductory CPRWE course appear in Ta-
bles 9A-9D.

What criteria determine exactly which patterns to teach?
Patterns taught in traditional programming curricula are often
designed to showcase pure logic, are frequently devoid of mean-
ingful application, and use pedestrian problems to illustrate
flow of control. In contrast, like a second language communica-
tive model where the patterns taught are those used in the unit
dialogues, the patterns in a similarly structured programming
language course are drawn from the MPSs. The rationale for the
content of the dialogues in a whole-language communicative

the increasingly sophisticated understanding and acquisition of
programming language skills. The probable reason for the ef-
fectiveness of this substitution is that the key feature shared by
communication and interaction is the feedback to learners on
how well formed their utterances/programs are.

In a programming language curriculum informed by foreign
language pedagogies, a Model Program or Simulation (MPS) will
serve as the central component around which each unit is orga-
nized, like the role of a unit dialogue in a foreign language course.
Much has been written over the past decade about contextual-
izing programming instruction. Indeed, this author has written
and published a detailed 50-page outline for a ten-unit cross-cur-
ricular introductory programming course, approved in 2013 as
a University of California Office of the President (UCOP) “g”
math elective, and called Computer Programming as if the Rest
of the World Existed (CPRWE) [28]. Eight of its units is centered
around a small to mid-size graphics-based MPS contextualized
within one of a diverse range of subjects, including Dynamic Art,
Geography, Political Science, Astronomy, and Molecular Mod-
eling.19

The challenges for a curriculum writer in drafting the MPSs
for each unit are to ensure: (a) that the code for the MPS re-
flects the particular language patterns one wants the unit to
focus on,20 so that students can see the practical utility of what
they are learning; (b) that the MPSs are generally sequenced
in order of increasing programming complexity; (c) that new
programming concepts/skills are introduced while reinforcing
ones previously learned; (d) that each MPS is highly engaging,
both visually and intellectually; and (e) that the MPSs are con-
textualized within academic fields that students already value,
and utilize basic concepts the students have previously encoun-
tered and already understand.

How is the MPS used? Consider how the foreign language
teacher initially introduces the unit dialogue to students, sets
up a structure for students to practice speaking and listening
skills using as raw material the verbal interactions between the
dialogue’s characters, and often asks students to memorize the
dialogues. In a parallel manner, the programming language in-
structor, using whole class instruction, initially guides students
to individually construct an MPS, a process which can take days
or weeks depending upon the size of the program. At various
intervals, the instructor will require students to memorize the
program (if short), or some newly-taught portion of it. The ra-
tionale is two-fold—to facilitate syntax acquisition; and to inti-
mately familiarize students with the structure and vocabulary
of the program, so that they can focus on the usage and mean-
ing of the program’s statements and methods in subsequent
instruction.

There is no exact counterpart, however, to the foreign lan-

21 �For example, students may need to modify the parameters of a for-loop by changing
the initialization value of a counter variable, its increment/update amount, and/or the
termination condition.

19 �Demos of many of these simulations can be viewed at www.downtownmagnets.org
on the Computer Science program page. A 2nd-year course, Generative Design/Art,
was approved (2017) by UCOP as an integrated “f” art elective

20 �As will be discussed, the choice of syntax features may not be completely
independent from the MPSs used for the curriculum’s content.

acm Inroads • inroads.acm.org  49

ARTICLES

50  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

be the correct application of that single pattern to several novel
word problems. The comprehensive assessment for the unit will
host problems reflecting the full range of patterns studied. Stu-
dents will evaluate each problem, decide which among the many
patterns is applicable, and craft an optimal solution.

Note that the prevailing instructional model expects stu-
dents to apply general concepts from lecture or the textbook to
solve a full variety of novel problems at a unit’s end—problems
whose solutions have not been explicitly demonstrated during
instruction. Consequently, students are somehow expected to
devise the pattern for each problem’s optimal solution de novo.
The alternative SLA-based instructional model proposes teach-
ing paradigmatic solutions to each kind of problem students are
expected to solve. With a variety of paradigms to choose from,
the key skill students are expected to develop is choosing the
paradigm that is applicable to the problem at hand—and then,
of course, using it to write an optimal solution. This is compa-
rable to the organization of units in a foreign language curricu-
lum, each dealing with the vocabulary and conversations typi-
cal of specific societal domains, e.g., sports, restaurants, travel,
and so on. This is not merely a difference in teaching philoso-
phy, but one grounded in educational psychology as well. Any

curriculum is to provide students the vocabulary, grammar, and
verbal exchanges for navigating a social situation that they typ-
ify and model. In like manner, the patterns in an MPS are ones
that students would employ to solve similar real-life problems
that they might encounter.

A series of exercises for the Circular Queue pattern in Table
9D would include the sub-patterns shown in Tables 10A-10D.
Note that the sample exercises employ scaffolding—the se-
quence begins with the simplest case and progressively intro-
duces the more complex cases that the method for the general
case (Table 10D) will need to handle. It also employs a pedago-
gy used much in the Algebra 1 classroom—moving from the
concrete to the abstract. Note that each sub-pattern should it-
self provide several exercises (a minimum of 5) to give students
sufficient practice.

An SLA-based instructional model dictates that all of the pat-
terns that students are expected to learn need to be taught, i.e.,
students should not be expected to solve problems whose pat-
terns they have not explicitly practiced, and they should not be
expected to magically extend logic—for the simple reason that
they are not yet experienced programmers. The assessment fol-
lowing each pattern’s (or sub-pattern’s) battery of exercises will

acm Inroads • inroads.acm.org  51

ARTICLES

decades of characterization of the novice programmer failure
phenomenon have not produced any improvements in learning,
nor pinpointed any credible cause. Predictably then, attempts at
curricular innovation, rooted in hunches and overwhelmingly
on the content side, have been ineffectual.

In contrast, the 2014 fMRI cognitive study of programmers
established that the brain makes sense of computer programs
in the regions of the brain long known to be associated with
language processing functions, not logic and not math. Al-
though more research will be required to prove the case de-
finitively, this physiological evidence puts a spotlight on an
aspect of programming instruction long taken for granted,
the Prescriptive Linguistics language model. Both the fMRI
study and the consistent anecdotal observations reported here
about the positive effects of memorization strategies on syn-
tax acquisition constitute a compelling argument for investi-
gating whether an alternate and frankly more promising ap-
proach—implicit language pedagogies informed by both SLA
theory and foreign language instructional principles—can en-
hance our instructional outcomes if scaled. On the flip side,
those wanting to devise new content or pedagogic approaches
to the introductory programming curriculum, but who ignore
the central cognitive role of language in programming, now
risk irrelevance. As Corder cautioned some fifty years ago, our
teaching will only succeed when it conforms to how the brains
of our students actually learn. 

References
	 1.	� Amirtha, T. This Is Your Brain On Code, According To Functional MRI Imaging. Fast

Company, April 21, 2014; http://www.fastcompany.com/3029364/this-is-your-brain-
on-code-according-to-functional-mri-imaging. Accessed 2017 November 22.

	 2.	� Bailey, N., Madden, C. & Krashen, S.D. Is there a ‘natural sequence’ in adult second
language learning? Language Learning, 24, 2 (1974), 235–243. doi: 10.1111/j.1467-
1770.1974.tb00505.x.

	 3.	� Bennedsen, J. & Caspersen, M. E. Failure Rates in Introductory
Programming. Inroads - The SIGCSE Bulletin, 39, 2 (June 2007), 32–36.
doi:10.1145/1272848.1272879.

	 4.	� Bransford, J., Sherwood, R., Vye, N. & Rieser, J. Teaching Thinking and Problem
Solving: Research Foundations. American Psychologist, 41, 10 (1986), 1078–1089.
doi:10.1037/0003-066X.41.10.1078.

	 5.	� California CTC (Commission on Teacher Credentialing). Supplementary
Authorization Guideline Book (CTC, July 2016); https://www.ctc.ca.gov/docs/
default-source/credentials/manuals-handbooks/supplement-auth.pdf. Accessed
2018 March 8.

	 6.	� Chomsky, C. The Acquisition of Syntax in Children from 5 to 10. (Cambridge, MA:
MIT Press, 1969).

	 7.	� College Board. AP Data: Program Summary Report 2017. (College Board, 2017);
https://secure-media.collegeboard.org/digitalServices/pdf/research/2017/Program-
Summary-Report-2017.pdf. Accessed 2017 November 22.

	 8.	� Corina, D. P., Lawyer, L. A., Hauser, P. & Hirshorn, E.. Lexical Processing in Deaf
Readers: An fMRI Investigation of Reading Proficiency. PLOS ONE, 8, 1 (2013), 1–10.

	 9.	� Corder, S. P. The Significance of Learner’s Errors. International Review of Applied
Linguistics in Language Teaching, 5, 4 (1967), 161–170.

	10.	� CSTA Standards Task Force. CSTA K-12 Computer Science Standards. (New York:
CSTA/ACM, 2011); http://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/
Docs/Standards/CSTA_K-12_CSS.pdf. Accessed 2017 November 22.

	 11.	� Dulay, H. C. & Burt, M. K. Should We Teach Children Syntax? Language Learning, 23,
2 (1973), 245–258. doi:10.1111/j.1467-1770.1973.tb00659.x.

	 12.	� Eklund, A., Nichols, T. & Knutsson, H. Cluster failure: Why fMRI inferences for spatial
extent have inflated false-positive rates. Proceedings of the National Academy of
Sciences, 113, 28 (2016), 7900–7905.

	 13.	� Floyd, B., Santander, T. & Weimer, W. Decoding the representation of code in the
brain: An fMRI study of code review and expertise. In ICSE ‘17 Proceedings of the
39th International Conference on Software Engineering, (2017), 175–86. doi: 10.1109/
ICSE.2017.24.

	14.	� Hamrick, Phillip. Ph.D. Dissertation, Georgetown University, Washington D.C.
Development of Conscious Knowledge During Early Incidental Learning Of L2
Syntax. (ProQuest, LLC, 2013), 3642262.

credentialed teacher knows that the ability to solve problems
is—and algorithms themselves are—highly domain-specific;
and that good problem-solvers draw upon prior experience and
knowledge of specific domains [4,34]. Even so, problem-solving
is a process that is still poorly understood.22

Finally, note that the approach described in this section will
of necessity require that instructors allocate considerably more
time to students practicing a unit’s concepts and sub-concepts
than the current instructional model provides. The instruc-
tional tension between breadth (coverage) and depth (detail)
is nothing new. Introductory programming language cours-
es have traditionally opted for breadth given the very limited
amount of time they have allotted—or more precisely, that they
have self-imposed upon their programs of study. Such a limited
time frame could never work in a foreign language curriculum,
where four semesters are typically allocated for students to ac-
quire proficiency in the fundamental workings of a language.
Foreign language curricula probe every topic in depth, because
the breadth of the curriculum can be adequately covered over
the two years budgeted for the program’s foundational se-
quence of courses. Unfortunately, there is no way to reconcile
the existing programming language model and course structure
with both breadth and depth learning. Something will have to
give, and the only resource available is time.

SUMMARY
In his seminal paper on the errors made by second language
learners, S.P. Corder asserted that errors provided evidence
of—and insights into—the process by which learners construct
and refine hypotheses about the underlying grammar of the
language data they hear. He wrote.

We have been reminded recently of Von Humboldt’s
statement that we cannot really teach language, we can
only create conditions in which it will develop sponta-
neously in the mind in its own way. We shall never im-
prove our ability to create such favourable conditions un-
til we learn more about the way a learner learns and what
his built-in syllabus is. [9]

Yet, it is exactly the way novice programmers learn that has
continued to remain a mystery, obscuring how improvements
to teaching might be achieved.

No one denies that the current introductory programming
pedagogic model leads to less than favorable learning out-
comes—particularly at the secondary level. The model un-
doubtedly contributes to ongoing low secondary enrollments
and the worst demographic inequities of any subject area. Four

22 �From a psychological vantage point, problem-solving is a complex phenomenon,
described by Gestalt theorists with notions like “restructuring,” “insight,” and
“entrenchment;” and by cognitivism with a reliance on domain knowledge and heuristics.
In all of these, although conditions that facilitate the crucial moments of insight can be
listed, there are no satisfactory explanations for how such insights arise. The incubation
phenomenon—setting aside a problem after being unable to find a solution, with a
solution later popping into one’s mind (like a forgotten detail that one remembers after
the fact)—argues that problem-solving may be a largely subconscious process.

52  acm Inroads  2018 June • Vol. 9 • No. 2

ARTICLES
The Introductory Computer Programming Course is First and Foremost a LANGUAGE Course

Programming. Huffington Post, April 23, 2014; https://www.huffingtonpost.com/
chris-parnin/scientists-begin-looking-_b_4829981.html. Accessed 2017 November 22.

	28.	� Portnoff, S. M.S. Thesis. California State University, Los Angeles. (1) The case
for using foreign language pedagogies in introductory computer programming
instruction; (2) A contextualized pre-AP computer programming curriculum:
Models and simulations for exploring real-world cross-curricular topics. (ProQuest,
LLC, 2016), 262; 10132126. http://pqdtopen.proquest.com/pubnum/10132126.
html?FMT=AI. Accessed 2017 November 22.

	29.	� Reges, S. & Stepp, M. Building Java Programs. 3rd ed. (Boston: Pearson, 2014).
	30.	� Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A., Leich, T., Saake, G.

& Brechmann, A. Understanding Understanding Source Code with Functional
Magnetic Resonance Imaging. In Proceedings of the 36th International Conference
on Software Engineering (2014), 378–389. doi:10.1145/2568225.2568252.

	31.	� Siegmund, J., Kästner, C., Apel, S., Parnin, C., Bethmann, A. & Brechmann, A.
Understanding Programmers’ Brains with fMRI. In Frontiers in Neuroinformatics
Conference Abstract: Neuroinformatics (2014). doi: 10.3389/conf.
fninf.2014.18.00040.

	32.	� Tagarelli, K.M. Ph.D. Dissertation, Georgetown University, Washington D.C. The
Neurocognition of Adult Second Language Learning: An fMRI Study. (ProQuest,
LLC, 2014); 3642262.

	33.	� Watson, C., & Li, F. W. Failure Rates in Introductory Programming Revisited. In
Proceedings of the 2014 Conference On Innovation & Technology In Computer
Science Education. (Uppsala, Sweden: Association for Computing Machinery, June
2014), 39–44. doi:10.1145/2591708.2591749.

	34.	� Woolfolk, A. Educational Psychology. 9th ed. (Boston: Pearson, Allyn and Bacon, 2004).
	35.	� Yokoyama, S., Kim, J., Uchida, S., Okamoto, H., Bai, C., Yusa, N. et al. A longitudinal

fMRI study of neural plasticity in the second language lexical processing.
Neuroscience Research Abstracts 58S (2007), S174.

Scott R. Portnoff
Downtown Magnets High School, Computer Science Dept.
1081 W Temple St., Los Angeles, CA 90012
srport@alum.mit.edu

DOI: 10.1145/3152433� ©2018 ACM 2153-2184/18/06 $15.00

	 15.	� Hesling, I., Dilharreguy, B., Bordessoules, M. & Allard, M. The Neural Processing
of Second Language Comprehension Modulated by the Degree of Proficiency: A
Listening Connected Speech fMRI Study. The Open Neuroimaging Journal, 6 (2012),
44–54.

	16.	� Kidwai, A. Knowledge of Language: Noam Chomsky’s Innateness Thesis.
Contemporary Education Dialogue, 5,2 (2008), 245–265. doi:10.1177/
0973184913411168.

	 17.	� Kummerfeld, S. K. & Kay, J. The neglected battle fields of Syntax Errors. In
Proceedings of the Fifth Australasian Conference on Computing Education, 20,
105–111. (Adelaide, Australia: Australian Computer Society, Inc., 2003).

	18.	� Lahtinen, E., AlaMutka, K. & Järvinen, H.M. A Study of the Difficulties of Novice
Programmers. In Proceedings of the 10th Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (June 27–29, 2005), 14–18.
doi:10.1145/1151954.1067453.

	19.	� Lewis-Kraus, G. The Great AI Awakening. New York Times (Magazine). December
14, 2016; http://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.
html?_r=0. Accessed 2017 November 22.

	20.	� Lo, Mun & Marton, Ference. Towards a science of the art of teaching: Using variation
theory as a guiding principle of pedagogical design. International Journal for
Lesson and Learning Studies, 1 (2011), 7–22. doi: 10.1108/20468251211179678.

	21.	� Mattern, K., Shaw, E. & Ewing, M. Advance Placement Exam Participation: Is AP
Exam Participation and Performance Related to Choice of College Major? (New
York, NY: College Board, 2011).

	22.	� McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G. & Mander, K. Grand
Challenges in Computing: Education—A Summary. The Computer Journal, 48,1
(2005), 42–48. doi:10.1093/comjnl/bxh064.

	23.	� Monti, M. M., Parsons, L. M. & Osherson, D. N. Thought Beyond Language: Neural
Dissociation of Algebra and Natural Language. Association for Psychological
Science, 23, 8 (2012), 914–922. doi:10.1177/0956797612437427.

	24.	� Morgan, R. & Klaric, J. AP Students in College: An Analysis of Five-Year Academic
Careers. (New York, NY: College Board, 2007).

	25.	� Moro, Andrea. The Boundaries of Babel: The Brain and the Enigma of Impossible
Languages. (Cambridge, MA: MIT Press, 2008).

	26.	� Pappano, L. Learning to Think Like a Computer. New York Times, April 4, 2017.
https://www.nytimes.com/2017/04/04/education/edlife/teaching-students-
computer-code.html?_r=0. Accessed 2017 November 22.

	27.	� Parnin, C. Scientists Begin Looking at Programmers’ Brains: The Neuroscience of

A personal walk down the
computer industry road.

BY AN EYE-WITNESS.
Smarter Than Their Machines: Oral Histories
of the Pioneers of Interactive Computing is
based on oral histories archived at the Charles
Babbage Institute, University of Minnesota.
These oral histories contain important messages
for our leaders of today, at all levels, including
that government, industry, and academia can
accomplish great things when working together in
an effective way.

