
nstructors of any introductory
computer programming course

routinely observe two groups of students:
those who learn and progress (the
traditional demographic overwhelmingly
composed of white/Asian males) and
a sizeable group who, though at grade
level, struggle throughout and learn
practically nothing. Known as the Novice
Programmer Failure Problem (NPFP),
over four decades of efforts to improve
outcomes for the strugglers have proven
unsuccessful. At the secondary level,
the phenomenon is even more lopsided
and intractable, affecting the majority
of grade-level students. In the United
¬tates,ɰsecondary ¬ instructors ɚȊȁʣ of
ǅhom it is estimated haǄe no formal ¬

education), like all public school teachers,
are tasked with delivering effective
instruction to all students, thus putting
them in an existential bind. About a dozen
years ago, a small group of educators
decided that programming education –
iɍeɍ the �dǄanced ¡lacement omputer
¬cience � course ɚ�¡ ¬ɠ�ɛ ɝ ǅas simply
not feasible.

The survey courses
As response, two secondary survey
courses, Exploring Computer Science and
Advanced Placement Computer Science
Principles, were developed with National
Science Foundation (NSF) funding.
Proponents viewed them not as a solution
to the NPFP, but as a way to skirt it

I

Introductory programming instruction can reach more, if not all, students if supplemented with
pedagogies that address the acquisition of programming languages as languages per se

STORY BY � o11����o/1+oƛ

altogether. Attacking the ‘programming-
centric’ focus of the APCS-A course as
exclusionary, they concocted a novel
narrative in which programming was
simply one of several co-equal strands in
the secondary CS curriculum. Despite the
rhetoric, both courses are considered pre-
APCS-A courses and have proliferated in
low-performing urban public high schools.

Proponents argued that the survey
courses would ‘broaden participation’
beyond the traditional APCS-A
demographic to females and traditionally
under-represented minorities. NSF’s goal
was more pragmatic: to create a high school
entry point into a CS pipeline intended to
alleviate a massive number of projected
computing vacancies.

At the same time, however, a College
Board study found that students taking
the APCS-A exam had a six- to eight-fold
higher probability of choosing a CS college
major (Morgan & Klaric, 2007). A later study
found that 20% of students who score 2
or higher on the exam choose a CS major,
and that fully 27% of students earning a
5 go on to major in CS (Mattern, Shaw, &
Ewing, 2011). Thus the APCS-A course
ǅas identified as being the entry point into
NSF’s CS pipeline, an inconvenient fact
ignored by the new narrative.

RedeƞninJ ƈSartiFiSationƉ
The survey courses intentionally avoided
attempts to deliver rigorous programming

FEATURE

THE KEY TO HELPING NOVICE
PROGRAMMERS: LANGUAGE

ACQUISITION INSTRUCTION

42 helloworld.cc

https://helloworld.raspberrypi.org/

helloworld.cc 43

instruction – doing nothing to prepare
students for subsequent CS coursework
that would inevitably involve programming
ɝ opting instead for superficial hobbyɠlike
treatments of programming and other
topics. As these courses proliferated, the
effect over the past decade has been
to greatly lower academic expectations
for secondary CS education. Instead of
helping students master content that
vertically aligns with subsequent academic
courseǅork, mere eǊposure to simplified
topics is expected to generate interest
that will magically enable students to
later circumvent the NPFP and acquire
programming competence.

Ànlike �¡ ¬ɠ�, there eǊists no research
demonstrating that the survey courses
spur students to take – or prepare them
to pass ɝ the �¡ ¬ɠ� eǊam or future
CS college coursework. Moreover, the
survey course narrative that demoted
programming from its central place in
the introductory curriculum is a fiction.
¹he universal postɠsecondary consensus
is that programming is the core skill
fundamental to the entire discipline –
crucial for understanding and plumbing
both basic and advanced CS topics
includingɰalgorithms ɝ on anything beyond
a trivial level.

Instead of authentically ‘broadening
participation’, therefore, the survey courses
have simply sǅapped one uneƐual tǅoɠ
tier track system for another, ironically,
but predictably, recapitulating the very
inequities they were intended to remedy.
The facade of more high school students
taking classes labelled ‘Computer Science’
may have PR value, but it’s only the latest
in a long history of ineffective ‘innovations’
that continue to obstruct, confuse and delay
real reform.

¹hat being said, �¡ ¬ɠ� is not ǅithout
its own problems. The course may be the
CS pipeline entry point, but it’s simply too
advanced for most gradeɠlevel students
andɰdemands a prereƐuisite. Øhy ¬
educators then put their efforts into
developing a survey course is a mystery,
because it’s unremarkably obvious that
an introductory course should be a
programming course that will effectively
identify and address headɠon the problems
novice programmers encounter.

The critical pedagogic role of language
In this regard, three recent fMRI studies
have confirmed that comprehension
of computer programs occurs in the
same regions of the brain that process
natural languages – not math, not logic
(Siegmund et al, 2014) (Floyd et al, 2017)
ɚ¬iegmund et al, ȃȁȂȈɛ. ¹his cognitiveɠ
physiological evidence indicates that
programming languages, despite being
artificial languages, are alive in the brains of
programmers in much the same way as any
natural language that those programmers
speak. This is a profound paradigm shift
for thinking about how students learn –
and are taught – programming languages,
and supports a compelling argument for
investigating pedagogies that address
language acquisition factors. I’ve previously
described supplemental instructional
strategies that focus on the teaching of
programming languages as languages per
se, and that, importantly, reach gradeɠlevel
students who formerly would have learned
little (Portnoff, 2016 / 2018). I therefore
contend that the root cause of the NPFP
is a pedagogic gap – we want students to
use logic to solve problems, but we neglect
to provide instruction that will help them
acquire the very language which mediates
that logic.

Human language is an innate, highly
specific cognitive ability Ɛuite distinct from
general intelligence. A language can’t be
taught explicitly; for example, through

grammar instruction. Rather teachers
need to provide the conditions, situations,
and experiences that facilitate its gradual
acquisition implicitly through: (a) repetitive
exposure to language data – vocabulary,
syntactic patterns, and paradigms – in
meaningful contexts; and (b) intentional
expressive use of the language with
implicit feedback. For most students, the
start of meaningful automaticity and basic
programming Ƿuency ɝ like the timeline for
foreign languages – emerges after two to
three years. Expectations for acquisition
of programming skills therefore need to
be adjusted and the timeline extended
from a single course to a multiɠyear
courseɰseƐuence.

Next time: Supplemental instructional
strategies that can help students acquire
programming languages implicitly.

Scott teaches Computer Science at
Downtown Magnets High School in the Los

$QJeOeV 8Qified 6cKooO 'iVtrict. ,Q �����
Ke Zrote a coQte[tuaOiVed iQtroductor\

SroJraPPiQJ courVe tKat uVeV PodeOV aQd
ViPuOatioQV Ior e[SOoriQJ reaO�ZorOd croVV�
curricuOar toSicV VSaQQiQJ tKe fieOdV oI art�

JeoJraSK\� aVtroQoP\� SoOiticaO VcieQce� aQd
EioOoJ\� iQto ZKicK Ke iV curreQtO\ iQteJratiQJ
OaQJuaJe acTuiVitioQ VtrateJieV. $ uQit IroP

tKiV courVe� '\QaPic :ord COoudV� reVideV iQ
tKe EQJaJe�C6�Edu reSoVitor\ aQd earQed aQ

EQJaJePeQt E[ceOOeQce deViJQatioQ.

7+E .E< 72 +E/3,1* 129,CE
352*5$00E56� LANGUAGE

ACQUISITION INSTRUCTION

MEMORISATION: AN IMPLICIT STRATEGY

Instructors routinely observe
students struggle with syntax errors
that block program compilation and
hamper learning. Memorisation of
small programs seemingly overnight
facilitates the acquisition of the basic
syntactic features necessary to avoid
compiler errors. How? The repetition
required for perfect memorisation
bombards a learner’s brain with
idealised language data and patterns,
priming it to inductively construct the
programming language’s syntax, as it
does for natural languages.

https://helloworld.raspberrypi.org/

	002_HW7

